SUPPRESSION OF PROLIFERATION AND INCREASED OF PRO-APOPTOTIC PROTEINS EXPRESSION IN HUMAN BREAST CANCER CELLS AFTER THEIR CO-CULTIVATION WITH BIFIDOBACTERIUM ANIMALIS IN VITRO


T. Kozak, O. Lykhova

R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Ukraine

DOI: https://doi.org/10.15407/oncology.2024.01.029

Summary. Aim: to determine the viability, proliferative activity, and reactive oxygen species (ROS) production in human breast cancer (BC) cells after their co-cultivation with a human microbiota member Bifidobacterium animalis. Object and methods: the study was conducted in vitro on human BC cells of MCF7, T47D, and MDA-MB-231 lines. Cells were co-cultured with live B. animalis bacteria in direct or metabolite-mediated (contactless co-cultivation in the Insert system) interaction between eukaryotic and bacterial cells. ROS production was assessed by flow cytometry. The expression of proteins associated with the regulation of proliferation and apoptosis in BC cells was evaluated by immunocytochemical analysis. Results: The most pronounced changes in the growth characteristics of human BC cells in vitro are caused by the direct interaction of bacterial and malignant cells, compared to the bacterial metabolite-mediated action. MCF-7 cells of the luminal subtype are most sensitive to the effects of B. animalis. Co-cultivation of BC cells with B. animalis leads to a decrease of Ki-67 expression in malignant cells, an increase in ROS production, and the expression of pro-apoptotic proteins Bax and p21WAF1. Translocalization of p21WAF1 expression from the cytoplasm to the cell nucleus was detected in T47D cells after exposure to B. animalis. Conclusions: the interaction of human BC cells with B. animalis and their secreted metabolites led to inhibition of the malignant cells proliferation, induction of oxidative stress, and apoptosis program activation in BC cells.

Key words: microbiota, Bifidobacterium animalis, breast cancer, apoptosis, reactive oxygen species.

 

References

  1. Belkaid Y, Harrison OJ. Homeostatic Immunity and the Microbiota. Immunity 2017; 46 (4): 562–76. doi: 1016/j.immuni.2017.04.008.
  2. GonzálezSánchez P, DeNicola GM. The microbiome(s) and cancer: know thy neighbor(s). J Pathol 2021; 254 (4): 332–43. doi: 1002/path.5661.
  3. Gopalakrishnan V, Helmink BA, Spencer CN, et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018; 33 (4): 570–80. doi: 1016/j.ccell.2018.03.015.
  4. Kundu P, Blacher E, Elinav E, Pettersson S. Our gut microbiome: the evolving inner self. Cell 2017; 171 (7): 1481–93. doi: 1016/j.cell.2017.11.024.
  5. Viswanathan S, Parida S, Lingipilli BT, et al. Role of gut microbiota in breast cancer and drug resistance. Pathogens 2023; 12 (3): 468. doi: 3390/pathogens12030468.
  6. Meng Z, Ye Z, Zhu P, et al. New developments and opportunities of microbiota in treating breast cancers. Front Microbiol 2022; 13: 818793. doi: 3389/fmicb.2022.818793.
  7. Ravnik Z, Muthiah I, Dhanaraj P. Computational studies on bacterial secondary metabolites against breast cancer. J Biomol Struct Dyn 2021; 39 (18): 7056–64. doi: 1080/07391102.2020.1805361.
  8. Salimi V, Shahsavari Z, Safizadeh B, et al. Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment. Lipids Health Dis 2017; 16 (1): 208. doi: 1186/s12944-017-0593-4.
  9. Thirunavukkarasan M, Wang C, Rao A, et al. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells. PLOS ONE 2017; 12 (10): e0186334. doi: 1371/journal.pone.0186334
  10. Wickramasinghe S, Pacheco AR, Lemay DG, Mills DA. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. BMC Microbiol 2015; 15 (1): 172. doi: 10.1186/s12866-015-0508-3.
  11. Wu BB, Yang Y, Xu X, Wang WP. Effects of Bifidobacterium supplementation on intestinal microbiota composition and the immune response in healthy infants. World J Pediatr 2016; 12 (2): 177–82. doi: 1007/s12519-015-0025-3.
  12. Kim KA, Jung IH, Park SH, Ahn YT, Huh CS, Kim DH. Comparative analysis of the gut microbiota in people with different levels of ginsenoside RB1 degradation to compound K. PLoS ONE 2013; 8 (4): e62409. doi: 1371/journal.pone.0062409.
  13. Schroeder BO, Birchenough GMH, Ståhlman M, et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 2018; 23 (1): 27–40.e7. doi: 1016/j.chom.2017.11.004.
  14. Kim JE, Kim JY, Lee KW, Lee HJ. Cancer chemopreventive effects of lactic acid bacteria. J Microbiol Biotechnol 2007; 17 (8): 1227–35. PMID: 18051589.
  15. Nakkarach A, Foo HL, Song AAL, et al. Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota. Microb Cell Factories 2021; 20 (1): 36. doi: 10.1186/s12934-020-01477-z.
  16. Górska A, Przystupski D, Niemczura MJ, et al. Probiotic bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol 2019; 76: 939–49. doi: 10.1007/s00284-019-01679-8.
  17. Karimi Ardestani S, Tafvizi F, Tajabadi Ebrahimi M. Heat-killed probiotic bacteria induce apoptosis of HT-29 human colon adenocarcinoma cell line via the regulation of Bax/Bcl2 and caspases pathway. Hum Exp Toxicol 2019; 38 (9): 1069–81. doi: 1177/0960327119851255.
  18. Detre S, Saclani Jotti G, Dowsett M. A ‘quickscore’ method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. J Clin Pathol 1995; 48 (9): 876–8. doi: 1136/jcp.48.9.876.
  19. Kozak T, Lykhova O, Serhiichuk T, et al. Optimization of experimental model systems for evaluating reciprocal influence of Bifidobacterium animalis and human breast cancer cells in vitro. Exp Oncol 2023; 45 (4): 504–14. doi: 15407/exp-oncology.2023.04.504.
  20. Shimizu Y, Isoda K, Taira Y, et al. Anti-tumor effect of a recombinant Bifidobacterium strain secreting a claudin-targeting molecule in a mouse breast cancer model. Eur J Pharmacol 2020; 887: 173596. doi: 10.1016/j.ejphar.2020.173596.
  21. Meng Z, Ye Z, Zhu P, et al. New Developments and Opportunities of Microbiota in Treating Breast Cancers. Frontiers in Microbiology 2022; 13: doi.org/10.3389/fmicb.2022.818793.
  22. Ravnik Z, Muthiah I, Dhanaraj P. Computational studies on bacterial secondary metabolites against breast cancer. Journal of Biomolecular Structure and Dynamics 2021; 39 (18): 7056–64. org/10.1080/07391102.2020.1805361.
  23. Salimi V, Shahsavari Z, Safizadeh B, et al. Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment. Lipids in Health and Disease 2017; 16 (1): doi.org/10.1186/s12944-017-0593-4.
  24. Thirunavukkarasan M, Wang C, Rao A, et al.. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells. PLOS ONE 2017, 12 (10): doi.org/10.1371/journal.pone.0186334.
  25. Bilenduke E, Sterrett JD, Ranby KW, et al. Impacts of breast cancer and chemotherapy on gut microbiome, cognitive functioning, and mood relative to healthy controls. Sci Rep 2022; 12 (1): 19547. doi: 10.1038/s41598-022-23793-7.
  26. Vincenzi A, Goettert MI, de Souza CFV. An evaluation of the effects of probiotics on tumoral necrosis factor (TNF-α) signaling and gene expression. Cytokine Growth Factor Rev 2021; 57: 27–38. doi: 10.1016/j.cytogfr.2020.10.004.
  27. Khan AQ, Rashid K, AlAmodi AA, et al. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomed Pharmacother 2021; 143: 112–42. doi: 1016/j.biopha.2021.112142.
  28. Fortunato RS, Gomes LR, Munford V, et al. DUOX1 silencing in mammary cell alters the response to genotoxic stress. Oxid Med Cell Longev 2018; 2018: 1–9. doi: 10.1155/2018/3570526.
  29. Kim SH, Lee WJ. Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions. Front Cell Infect Microbiol 2014; 3: doi: 10.3389/fcimb.2013.00116.
  30. Sommer F, Bäckhed F. The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium. Mucosal Immunol 2015; 8 (2): 372–9. doi: 1038/mi.2014.74.
  31. Alexander JL, Wilson ID, Teare J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 2017, 14 (4): 356–65. doi: 10.1038/nrgastro.2017.20.
  32. Ćmielová J, Řezáčová M. Protein and its function based on a subcellular localization. Journal of Cellular Biochemistry 2011; 112 (12): 3502–06. doi: 10.1002/jcb.23296.

No comments » Add comment