INFLUENCE OF COVID19 AND VACCINATION AGAINST SARS-COV-2 ON THE COURSE OF ONCOHEMATOLOGICAL DISEASES. PART II. PATTERN OF ACE2 RECEPTOR EXPRESSION AND THE INFLUENCE OF SARS-COV-2 ON INFLAMМATION
L.M. Kovalevska1, V.M. Shcherbina1, I.A. Kryachok2, I.B. Tytorenko2, O.V. Kashuba1
1 RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine,
2 State non-profi enterprise “National Cancer Institute”, Kyiv, Ukraine
DOI: https://doi.org/10.15407/oncology.2024.04.301
Coronavirus disease 2019 (COVID-19), which is similar in symptoms to pneumonia, is caused by the new coronavirus SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2). From March 3, 2020, when COVID-19 was first diagnosed in Ukraine, to April 13, 2024 (https://index.minfin.com.ua/ua/reference/coronavirus/ukraine/), in Ukraine, with a population of 41 130 thousand, there were 5 557 995 infected people, of whom 112 418 died, or approximately 2%. Of note, vaccination against coronavirus in Ukraine began only on February 24, 2021, and on June 18, 2024 approximately 38.0% of the population (15 729 617 people) have been vaccinated, with 36.96% (15 201 112 people) fully vaccinated, and only 1.76% (724 557 people) of the country’s population, received a booster dose. Previously, the genetic characteristics of the SARS-COV-2 virus variants in three waves of the pandemic in Ukraine were discussed, now the main attention will be paid to the mechanism of interaction between the virus and the host cell, as well as the molecule that serves as the coronavirus receptor — ACE2 (Angiotensin I-converting enzyme 2).
Keywords: COVID 19, SARS-CoV-2, virus-host cell interaction, viral protein S, ACE2 protein, CD209L
References
Kovalevska LM, Kryachok IA, Matveeva AS, et al. Influence of COVID19 and vaccination against SARS-COV-2 on the course of oncohematological Part I. Genetic characteristics of SARS-COV-2 variants upon the three waves of the pandemic in ukraine. Oncology 2024; 26 (3): 216–221. doi: 10.15407/oncology.2024.03.216.
V’Kovski P, Kratzel A, Steiner S, et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19 (3): 155–1 doi: 10.1038/s41579-020- 00468-6.
Masters The molecular biology of coronaviruses. Adv Virus Res 2006; 66: 193–292. doi: 10.1016/S0065-3527- (06)66005-3.
Bai C, Zhong Q, Gao GF. Overview of SARS-CoV-2 genome- encoded Sci China Life Sci 2022; 65 (2): 280–94. doi: 10.1007/s11427-021-1964-4.
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-convert- ing enzyme 2 is a functional receptor for the SARS coro- Nature 2003; 426 (6965): 450–4. doi: 10.1038/ nature02145.
Hoff M, Kleine-Weber H, Schroeder S, et al. SARS- CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181 (2): 271–280 doi: 10.1016/j.cell.2020.02.052.
Wang MY, Zhao R, Gao LJ, et al. SARS-CoV-2: structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol 2020; 10: 587269. doi: 10.3389/ 2020.587269.
Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020; 581 (7807): 215–20. doi: 11038/s41586- 020-2180-5.
Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 581 (7807): 221–4. doi: 11038/s41586-020-2179-y.
Hikmet F, Mear L, Edvinsson A, et al. The protein expression profi of ACE2 in human Mol Syst Biol 2020; 16 (7): e9610. doi: 10.15252/msb.20209610.
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung Nat Med 2005; 11 (8): 875–9. doi: 10.1038/ nm1267.
Jeff SA, Tusell SM, Gillim-Ross L, et al. CD209L (L- SIGN) is a receptor for severe acute respiratory syndrome c Proc Natl Acad Sci USA 2004; 101 (44): 15748–53. doi: 10.1073/pnas.0403812101.
Durante A, Peretto G, Laricchia A, et al. Role of the renin- angiotensin-aldosterone system in the pathogenesis of atherosc Curr Pharm Des 2012; 18 (7): 981–1004. doi: 10.2174/138161212799436467.
Sodhi PV, Sidime F, Tarazona DD, et al. A closer look at ACE2 signaling pathway and processing during COVID- 19 infection: Identifying possible Vaccines (Basel) 2022; 11 (1): 13. doi: 10.3390/vaccines11010013.
Benigni A, Cassis P, Remuzzi Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med 2010; 2 (7): 247–57. doi: 10.1002/emmm.2010 00080.
Ziaja M, Urbanek KA, Kowalska K, et al. Angiotensin II and Angiotensin Receptors 1 and 2- Multifunctional system in cells biology, what do we know? Cells 2021; 10 (2): 38 doi: 10.3390/cells10020381.
Zhang F, Ren X, Zhao M, et al. Angiotensin-(1-7) abrogates angiotensin II-induced proliferation, migration and inflam- mation in VSMCs through inactivation of ROS-mediated PI3K/Akt and MAPK/ERK signaling Sci Rep 2016; 6: 34621. doi: 10.1038/srep34621.
Simoes e Silva AC, Silveira KD, Ferreira AJ, et al. ACE2, angiotensin-(1-7) and Mas receptor axis in infl tion and fi Br J Pharmacol 2013; 169 (3): 477–92. doi: 10.1111/bph.12159.
Villalobos LA, San Hipolito-Luengo A, Ramos-Gonzalez M, et al. The Angiotensin-(1–7)/Mas axis counteracts Angio- tensin II-dependent and -independent pro-inflammatory signaling in human vascular smooth muscle cells. Front Pharmacol 2016; 7: doi: 10.3389/fphar.2016.00482.
Burrell LM, Johnston CI, Tikellis C, et al. ACE2, a new regulator of the renin-angiotensin Trends Endo- crinol Metab 2004; 15 (4): 166–9. doi: 10.1016/j.tem.2004. 03.001.
Beyerstedt S, Casaro EB, Rangel COVID-19: angio- tensin-converting enzyme 2 (ACE2) expression and tis- sue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis 2021; 40 (5): 905–19. doi: 10.1007/ s10096-020-04138-6.
Jia HP, Look DC, Tan P, et al. Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithe- Am J Physiol Lung Cell Mol Physiol 2009; 297 (1): L84–96. doi: 10.1152/ajplung.00071.2009.
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-con- verting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anni- versary of the discovery of ACE2. Circ Res 2020; 126 (10): 1456–74. doi: 10.1161/CIRCRESAHA.120.317015.
Patel VB, Clarke N, Wang Z, et al. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the J Mol Cell Cardiol 2014; 66: 167–76. doi: 10.1016/j. yjmcc.2013.11.017.
Martina Z, Christina H, Le L, et al. Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA struc- bioRxiv [Preprint] 2020; 6: 2020.12.05.409821. doi: 10.1101/2020.12.05.409821.
Lamers MM, Haagmans SARS-CoV-2 pathogenesis. Nat Rev Microbiol 2022; 20 (5): 270–84. doi: 10.1038/ s41579-022-00713-0.
Pacheco-Herrero M, Soto-Rojas LO, Harrington CR, et al. Elucidating the neuropathologic mechanisms of SARS- CoV-2 Front Neurol 2021; 12: 660087. doi: 10. 3389/fneur.2021.660087.
Banu N, Panikar SS, Leal LR, et al. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to macrophage activation syndrome: Therapeutic Life Sci. 2020; 256: 117905. doi: 10.1016/j. lfs.2020.117905.
No comments » Add comment