CONCERNING THE LATENT INFECTION PROGRAMS OF EPSTEIN-BARR VIRUS IN B-CELLS OF CHRONIC LYMPHOCYTIC LEUKEMIA


L. Kovalevska1, A. Matveeva1, I. Tytorenko2, I. Kryachok2

1 RE Kavetsky Institute of experimental pathology, oncology and radiobiology of National Academy of sciences of Ukraine,
2 The state non-profit enterprise “National Cancer Institute”, Kyiv, Ukraine

DOI: https://doi.org/10.15407/oncology.2024.04.249

 

The treatment of hematological diseases is one of the most complex problems of modern medicine. It is known that humoral immunity is based on B-lymphocytes, which at the terminal stages of differentiation turn into antibody-forming immunoblasts and plasma cells. Chronic lymphocytic leukemia (CLL) develops with a significant increase in phenotypically mature but immunocompetent B lymphocytes, that are characterized by the presence of atypical patterns of marker expression. The reasons for the inhibition of the cell signaling pathway responsible for proliferation and apoptosis in mature B lymphocytes of patients with CLL are extremely important, but still poorly understood. In-depth analysis of the key players of signaling cascades and transcription factors that are functionally suppressed in CLL will improve the prognosis of the disease and help develop personalized treatment for such patients.

Keywords: chronic lymphocytic leukemia, transcription factors, apoptosis, nuclear antigens EBNA, EBNA-2, membrane proteins LMP, LMP-1, malignant transformation, proliferation

 

References

 

Cancer in Ukraine, 2022–2023. Incidence, mortality, preva- lence and other relevant statistic Bulletin of the National Cancer Registry of Ukraine. Kyiv, 2024. 25. http://www.ncru.inf.ua/publications/BULL_25/index.htm.

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70 (1): 7–30. doi: 13322/caac. 21590.

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, CA Cancer J Clin 2023; 73 (1): 17–48. doi: 10.3322/ caac.21763.

Rozovski U, Keating MJ, Estrov Why Is the immunoglo- bulin heavy chain gene mutation status a prognostic indica- tor in chronic lymphocytic leukemia? Acta Haematol 2018; 140 (1): 51–54. doi: 10.1159/000491382.

Scarfò L, Dagklis A, Scielzo C, et al. CLL-like monoclo- nal B-cell lymphocytosis: are we all bound to have it?Semin Cancer Biol 2010; 20 (6): 384–90. doi: 10.1016j.semcancer.2010.08.005.

Fabbri G, Dalla-Favera The molecular pathogenesis of chronic lymphocytic leukaemia. Nat Rev Cancer 2016; 16 (3): 145–62. doi: 10.1038/nrc.2016.8.

Alaggio R, Amador C, Anagnostopoulos I, et al. The 5thedition of the World Health Organization Classifi ation of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022; 36 (7): 1720–48. doi: 11038/s41375-022- 01620-2.

Rammal, S, Semaan, W, Aprahamian N, et al. Spotlight on borderline-IGHV mutational status in chronic lymphocytic Front Oncol 2024; 14, 1430225. doi: 10.3389. fonc.2024.1430225

Stamatopoulos, B, Timbs A, Bruce D, et al. Targeted deep sequencing reveals clinically relevant subclonal IgHV rear- rangements in chronic lymphocytic Leukemia 2017; 31: 837–845. doi: 10.1038/leu.2016.307.

Cerhan JR, Slager Familial predisposition and genetic risk factors for lymphoma. Blood 2015; 126 (20): 2265–73. doi.org/10.1182/blood-2015-04-537498.

Cerreto M, Foà, R, Natoni A. The role of the microen- vironment and cell adhesion molecules in chronic lym- phocytic Cancers 2023; 15: 5160. doi: 10.3390/ cancers15215160.

Hacken TE, Burger Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leu- kemia: Implications for disease pathogenesis and treat- ment. Biochim Biophys Acta 2016; 1863 (3): 401–13. doi: 10.1016/j.bbamcr.2015.07.009.

Zent CS, Burack Mutations in chronic lymphocytic leukemia and how they affect therapy choice: focus on NOTCH1, SF3B1, and TP53. Hematology Am Soc He- matol Educ Program 2014; 5 (1): 119–24. doi: 10.1182/ asheducation-2014.1.119.

Matvieieva AS, Kovalevska LM, Polishchuk O Expres- sion profile of transcription factors in the blood samples of patients with the chronic lymphocytic leukemia. Oncology 2016; 18 (4): 311–6. (in Ukranian)

Epstein MA, Achong BG, Barr Virus particles in cul- tured lymphoblasts from Burkitt’s lymphoma. Lancet 1964; 1 (7335): 702–3.

Cruchley AT, Williams DM, Niedobitek G, Young Ep- stein-Barr virus: biology and disease. Oral Dis 1997; 3 (1): S156-63. doi: 10.1111/j.1601-0825.1997.tb00351.x.

Williams H, Crawford Epstein-Barr virus: the impact of scientifi advances on clinical practice. Blood 2006; 107 (3): 862–9. doi: 10.1182/blood-2005-07-2702.

Murray PG, Young An etiological role for the Epstein- Barr virus in the pathogenesis of classical Hodgkin lym- phoma. Blood 2019; 134 (7): 591–6. doi: 10.1182/blood. 2019000568.

Young LS, Rickinson Epstein-Barr virus: 40 years on. Nat Rev Cancer 2004; 4 (10): 757–68. doi: 10.1038/nrc 1452.

Cohen Epstein-Barr virus infection. N Engl J Med 2000;343 (7): 481–92. doi: 10.1056/NEJM200008173430707.

Raab-Traub Epstein-Barr virus in the pathogenesis of NPC. Semin Cancer Biol 2002; 12 (6): 431–41. doi: 10. 1016/S1044-579X(02)00056-4.

Kimura H, Ito Y, Kawabe S, et al. Epstein-Barr virus-asso- ciated T/natural killer-cell lymphoproliferative diseases. Blood 2012; 119 (23): 5968–77. doi: 11182/blood-2011- 12-404939.

Gonzalez H, Hagerling C, Werb Roles of the immune sys- tem in cancer: from tumor initiation to metastatic progres- sion. Genes & Development 2018; 32 (19–20): 1267–84. doi: 10.1101/gad.314617.118.

Lee CP, Chen Conquering the Nuclear Envelope Bar- riers by EBV Lytic Replication.Viruses. 2021; 13 (4): 702. doi: 10.3390/v13040702.

Gandhi MK, Tellam JT, Khanna Epstein-Barr virus-as- sociated Hodgkin’s lymphoma. Br J Haematol 2004; 125 (3): 267–81. doi: 10.1111/j.1365-2141.2004.04902.x.

Küppers B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol 2003; 3 (10): 801–12. doi: 10.1038/nri1202.

Ambinder RF, Weiss Association of Epstein-Barr vi- rus with Hodgkin’s disease. In: Mauch PM, Armitage JO, Diehl V, et al. Hodgkin’s Disease. Philadelphia: Lippincott Williams & Wilkins, 1999. p. 79–98.

Klein E, Kis LL, Klein Interaction of Epstein-Barr vi- rus (EBV) with human B-lymphocytes. Biochem Biophys Res Commun 2010; 396 (1): 67–73. doi: 10.1016/j.bbrc. 2010.04.079.

Fingeroth JD, Weissman D, Tedder TF, et al. Epstein-Barr virus receptor of human B lymphocytes is the C3d recep- tor Science 1984; 234 (4781): 1096–9. doi: 10.1126/ science.6098287.

Fearon DT, Carroll Regulation of B lymphocyte respon- ses to foreign and self-antigens by the CD19/CD21 com- plex. Ann Rev Immunol 2000; 18: 393–422. doi: 10.1146/ annurev.immunol.18.1.393.

Zimber-Strobl U, Kremmer E, Grässer FA, et al. The Ep- stein-Barr virus nuclear antigen 2 interacts with an EBNA2 responsive cis-element of the terminal protein 1 gene pro- moter. EMBO J 1993; 12 (1): 167–75. doi: 11002/j.1460- 2075.1993.tb05642.x.

Saha A, Robertson Impact of EBV essential nuclear pro- tein EBNA-3C on B-cell proliferation and apoptosis. Future Microbiol 2013; 8 (3): 323–52. doi: 10.2217/fmb.12.147.

Zhao B, Marshall DR, Sample CE. A conserved domain of the Epstein-Barr virus nuclear antigen EBNA-3A is essen- tial for B-lymphocyte growth transformat J Virol 1996; 70 (4): 2557–65. doi: 10.1128/jvi.70.4.2557-2565.1996.

Mohan J, Dement-Brown J, Maier S, et al. Epstein-Barr virus nuclear antigen 2 induces FcRH5 expression through Blood 2006; 107 (11): 4433–9. doi: 10.1182/blood- 2005-09-3815.

Bornkamm GW, Kempkes The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol 1999; 73 (5): 4481–4. doi: 10.1128/JVI.73.5.4481- 4484.1999.

Sana I, Mantione ME, Angelillo P, Muzio Role of NFAT in chronic lymphocytic leukemia and other B-cell malig- nancies. Front Oncol 2021; 11: 666474. doi: 10.3389/fonc. 2021.666474.

Zhou S, Fujimuro M, Hsieh J, et al. A role for SKIP In EBNA2 activation of CBF1-Repressed J Virol 2000; 74 (4): 1939–47. doi: 10.1128/jvi.74.4.1939-1947.2000.

Zhao B, Marshall DR, Sample CE. A conserved domain of the Epstein-Barr virus nuclear antigen EBNA-3A is essen- tial for B-lymphocyte growth transformat J Virol 1996; 70 (4): 2557–65. doi: 10.1128/jvi.70.4.2557-2565.1996.

Thorley-Lawson DA, Gross A. Persistence of the Epstein- Barr virus and the origins of associated lymphomas. N Engl J Med 2004; 350 (13): 1328–37. doi: 10.1056/NEJMra 03201

Caldwell RG, Wilson JB, Anderson SJ, Longnecker R. Ep- stein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 1998; 9 (3): 405–1 doi: 10.1016/S1074-7613- (00)80623-3.

Schultheiss U, Puschner S, Kremmer E, et al. TRAF6 is a critical regulator of LMP1 functions in Int Immunol 2014; 26 (3): 149–59. doi: 10.1093/intimm/dxt062.

Kaye KM, Izumi KM, Kieff Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci USA 1993; 90 (19): 9150–4. doi: 10.1073/pnas.90.19.9150.

Kilger E, Kieser A, Baumann M, Hammerschmidt W. Ep- stein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an acti- vated CD40 EMBO J 1998; 17 (6): 1700–9. doi: 10.1093/emboj/17.6.1700.

Zhang L, Pagano Interferon regulatory factor 7 media- tes activation of Tap-2 by Epstein-Barr virus latent mem- brane protein 1. J Virol 2001; 75 (7): 341–50. doi: 10.1128/ JVI.75.7.341-350.2001.

Niu G, Wright KL, Ma Y, et al. Role of Stat3 in regulating p53 expression and Mol Cell Biol 2005; 25 (17): 7432–40. doi: 10.1128/MCB.25.17.7432-7440.2005.

Ning S, Pagano JS, Barber IRF7: activation, regula- tion, modifi ation, and function. Genes Immun 2011; 12 (6): 399–414. doi: 10.1038/gene.2011.21.

Kondo S, Seo SY, Yoshizaki T, et al. EBV latent membrane protein 1-induced VEGF production is associated with increased HIF-1α expression mediated by the PI3K/Akt/ mTOR pathway. Cancer Res 2006; 66 (16): 8357–64. doi: 10.1158/0008-5472.CAN-06-1201.

Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhi- bitors: a novel class of potent and effective antitumor Cancer Res 1999; 59 (11): 2615–22. PMID: 10363983.

Fruman DA, Rommel PI3K and cancer: lessons, chal- lenges and opportunities. Nat Rev Drug Discov 2014; 13 (2): 140–56. doi: 10.1038/nrd4204.

Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for N Engl J Med 2012; 366 (9): 799–807. doi: 10.1056/NEJMoa 1110557.

Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic N Engl J Med 2013; 369 (1): 32–42. doi: 10.1056/NEJMoa 1215637.

Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic N Engl J Med. 2016; 374 (4): 311–22. doi: 10.1056/NEJMoa 1513257.

 


No comments » Add comment