E.A. Domina, Yu.V. Dumanskyi, L.I. Mаkovetska, O.A. Glavin, V.M. Mikhailenko, І.V. Prokopenko
R.E.Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/oncology.2024.02.085
Summary. Despite the positive results achieved in recent years in the treatment of cervical cancer (CC), the overall and recurrence-free survival of patients with this pathology leaves much to be desired. This is connected with a number of problems. The main ones are late diagnosis, which leads to the neglect of the tumor process, insufficient effectiveness of conservative treatment methods, which depends on relatively low sensitivity to the drugs used, and low specificity of the radiation therapy (RT) used. Based on the analysis of data from the literature and our own research, the way to determine among the main radiobiological indicators, which take into account the mechanisms and stages of the formation of radiation lesions, predictors of complications due to RT in CC patients. This will make it possible to single out a group at increased risk of developing negative effects of RT, to develop effective means of pathogenetic therapy for tissue damage from around the tumor, and thus to reduce the frequency, nature and degree of severity of remote side complications of RT in this category of patients, which will contribute to improving the quality of life of patients.
References
- Cancer in Ukraine, 2022-2023. Incidence, mortality, preva- lence and other relevant statistic Bulletin of the national cancer registry of Ukraine. Kyiv, 2024. 25. http://www.ncru. inf.ua/publications/BULL_25/index.htm#hcr. Accessed June 07, 2024.
- Dumanskyi Yu.V., Domina E.A., Makovetska I. Radiation therapy in the treatment of cervical cancer in Ukraine. Current Issues of Radiobiology — 2023 (By the matheri- als of 8th Congress of Ukrainian Radiobiological Society, Zhytomyr, August 21–25, 2023). Ukrainian Radiobiologi- cal Society, Zhytomyr, 2023: 21. https://icbge.org.ua/re/ images/c/c1/Book_URS_2023.pdf. (in Ukrainian).
- Cruz-Gregorio A, Manzo-Merino J, Lizano Cellular redox, cancer and human papillomavirus. Virus Res 2018; 246: 35–45. doi: 10.1016/j.virusres.2018.01.003.
- Georgescu SR, Mitran CI, Mitran MI, et al. New Insights in the Pathogenesis of HPV Infection and the Associated Carcinogenic Processes: The Role of Chronic Inflammation and Oxidative J Immunol Res. 2018; 2018: 5315816. doi: 10.1155/2018/5315816.
- Reuter S, Gupta SC, Chaturvedi MM, Aggarwal Oxida- tive stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49 (11): 1603–16. doi: 10.1016/j. freeradbiomed.2010.09.006.
- Zahra K, Patel S, Dey T, et al. A study of oxidative stress in cervical cancer- an institutional Biochem Biophys Rep. 2020; 25: 100881. doi: 10.1016/j.bbrep.2020.100881.
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Cervical Version 3.2024 — May 6, 2024. https://www.nccn.org/. 07.06.2024 р.
- Sarabhai T, Schaarschmidt BM, Wetter A, et al. Comparison of 18F-FDG PET/MRI and MRI for pre-therapeutic tu- mor staging of patients with primary cancer of the uterine Eur J Nucl Med Mol Imaging 2018; 45 (1): 67–76. doi: 10.1007/s00259-017-3809-y.
- Ivankova VS, Domina EA, Khrulenko TV, et al. Effects of brachytherapy on cytogenetic parameters and oxidative sta- tus in peripheral blood lymphocytes of gynecologic cancer Exp Oncol 2021; 43 (3): 242–6. doi: 10.32471/ exp-oncology.2312-8852.vol-43-no-3.16514.
- Domina EA, Philchenkov A, Dubrovska A. Individual Re- sponse to Ionizing Radiation and Personalized Radiothera- py. Crit Rev Onco 2018; 23 (1–2): 69–92. doi: 10.1615/Crit RevOncog.2018026308.
- Pfaendler KS, Tewari Changing paradigms in the syste- mic treatment of advanced cervical cancer. Am J Obstet Gynecol 2016; 214 (1): 22–30. doi: 10.1016/j.ajog.2015.07. 022.
- Ivankova VS, Domina EA, Khrulenko TV, et al. Iridium-192 radiotherapy benefits in the management of gynecological Probl Radiac Med Radiobiol 2020; 25: 569–78. doi: 10.33145/2304-8336-2020-25-569-578.
- Al Feghali KA, Elshaikh MA. Why brachytherapy boost is the treatment of choice for most women with locally advanced cervical carcinoma? 2016; 15 (2): 191–9. doi: 10.1016/j.brachy.2015.12.003
- Martinelli F, Signorelli M, Bogani G, et al. Is aortic lympha- denectomy indicated in locally advanced cervical cancer af- ter neoadjuvant chemotherapy followed by radical surgery? A retrospective study on 261 wo Eur J Surg Oncol 2016; 42 (10): 1512–8. doi: 10.1016/j.ejso.2016.06.004.
- Ivankova V, Domina E, Khrulenko T, Mаkovetska L, et al. Prediction of radiation complications by determining the blood oxidation processes in cervical cancer patients under chemoradiotherap Ukrainian Journal of Radiology and Oncology 2024; 32 (1), 56–69. https://doi.org/10.46879/ ukroj.1.2024.56-69.
- Domina EA, Dumansky YuV. Medical and radiobiological as- pects of radiation comdplications in patients with oncogine- cological profi Oncology 2023; 25 (1): 9–1 ttps://doi. org/10.15407/oncology.2023.01.009. (in Ukrainian).
- Wang JS, Wang HJ, Qian Biological eff of radia- tion on cancer cells. Mil Med Res 2018; 5 (1): 20. doi: 10. 1186/s40779-018-0167-4.
- Suit H, Goldberg S, Niemierko A, et al. Secondary car- cinogenesis in patients treated with radiation: a review of data on radiation-induced cancers in human, non-human primate, canine and rodent Radiat Res 2007; 167 (1): 12–42. doi: 10.1667/RR0527.1.
- Ciszewski WM, Tavecchio M, Dastych J, Curtin DNA- PK inhibition by NU7441 sensitizes breast cancer cells to ionizing radiation and doxorubicin. Breast Cancer Res Treat 2014; 143 (1): 47–55. doi: 10.1007/s10549-013-2785-6.
- Chow JP, Man WY, Mao M, et al. PARP1 is overexpressed in nasopharyngeal carcinoma and its inhibition enhances radiotherapy. Mol Cancer Ther 2013; 12 (11): 2517–28. doi: 11158/1535-7163.MCT-13-0010.
- Domina EA. Stakhovskyi TV, Safronova OV, et al. Bio- chemical and cytogenetic indices of peripheral blood lymphocytes in patients with prostate Dopov Nac akad nauk Ukr 2018; (4): 102–9. DOI: doi.org/10.15407/ dopovidi2018.04.102. (in Ukranian).
- Ke G, Liang L, Yang JM, et al. MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD Oncogene 2013; 32 (25): 3019–27. doi: 10.1038/onc.2012.323.
- Brzozowska K, Pinkawa M, Eble MJ, et al. In vivo versus in vitro individual radiosensitivity analysed in healthy donors and in prostate cancer patients with and without severe side eff after radiotherapy. Int J Radiat Biol 2012; 88 (5): 405–13. doi: 10.3109/09553002.2012.666002.
- Druzhyna MO, Domina EA, Makovetska Metabolites of oxidative stress as predictors of the radiation and carcino- genic risks. Oncology 2019; 21 (2): 170–5. (in Ukranian).
- Domina EA, Makovetska LI, Druzhyna Relevant bio- chemical indices of blood radiosensitivity in gynecological cancer patients. Probl Radiac Med Radiobiol 2022; 26: 216–33. doi: 10.33145/2304-8336-2022-27-216-233.
- Kawamura K, Qi F, Kobayashi Potential relationship be- tween the biological effects of low-dose irradiation and mitochondrial ROS production. J Radiat Res 2018; 59 (suppl_2): ii91-ii97. doi: 10.1093/jrr/rrx091.
- Azzam EI, Jay-Gerin JP, Pain Ionizing radiation-in- duced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2012; 327 (1–2): 48-60. doi: 10.1016/j.canlet. 2011.12.012.
- Kamat Peroxynitrite: a potent oxidizing and nitrating agent. Indian J Exp Biol 2006; 44 (6): 436–47. PMID: 16784114.
- Yahyapour R, Motevaseli E, Rezaeyan A, et al. Reduction- oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation Clin Transl Oncol 2018; 20 (8): 975–88. doi: 10.1007/s12094-017-1828-6.
- Kim W, Lee S, Seo D, et al. Cellular Stress Responses in Radiotherapy. Cells 2019; 8 (9): 11 doi: 10.3390/cells 8091105.
- Al-Oubaidy SA, Mekkey Free radicals have an important role in cancer initiation and development. Med J Babylon 2021; 18: 1–5. DOI: 10.4103/MJBL.MJBL_74_20.
- Druzhina NA, Moiseev Application of chemiluminescent methods in biochemical investigations. Ukr Biokhim Zh. 2005; 77 (2): 58–65. PMID: 16335234. (in Ukranian).
- Druzhyna MO, Makovetska LI, Domina EA. The intensity of superoxide anion-radical generation by blood lymphocytes of donors as a predictor of their radiosensitivity. Ukrainian Journal of Radiology and Oncology: materials of scientific practice conf. Ukr. society rad. of Oncologists (UTRO) with the participation of international experts “Current issues of radiation oncology in Ukraine”, September 16–17, 2020. Odessa 2020; (Pt. 2): 29–31. (in Ukranian).
- Khan MS, Liu C, Meng F, et al. X-rays Stimulate Granular Secretions and Activate Protein Kinase C Signaling in Hu- man Curr Issues Mol Biol 2023; 45 (7): 6024–39. doi: 10.3390/cimb45070380.
- Liu X, Gong B, de Souza LB, et al. Radiation inhibits salivary gland function by promoting STIM1 cleavage by caspase-3 and loss of SOCE through a TRPM2-dependent pathway. Sci Signal 2017; 10 (482): doi: 10.1126/scisignal. aal4064.
- Wei Y, Xiao G, Xu H, Sun X, et al. Radiation resistance of cancer cells caused by mitochondrial dysfunction depends on SIRT3-mediated mitophagy. FEBS J 2023; 290 (14): 3629–45. doi: 10.1111/febs.16769.
- Taghizadeh-Hesary F, Houshyari M, Farhadi Mitochond- rial metabolism: a predictive biomarker of radiotherapy effi acy and toxicity. J Cancer Res Clin Oncol 2023; 149 (9): 6719–41. doi: 10.1007/s00432-023-04592-7.
- Sivandzade F, Bhalerao A, Cucullo Analysis of the Mito- chondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio Protoc 2019; 9 (1): e3128. doi: 10.21769/BioProtoc.3128.
- Perry SW, Norman JP, Barbieri J, et al. Mitochondrial mem- brane potential probes and the proton gradient: a practi- cal usage Biotechniques 2011; 50 (2): 98–115. doi: 10.2144/000113610..
- Fu X, Tang J, Wen P, Huang Z, Najafi Redox interac- tions-induced cardiac toxicity in cancer therapy. Arch Bio- chem Biophys 2021; 708: 108952. doi: 10.1016/j.abb.2021. 108952.
- Azzam EI, Jay-Gerin JP, Pain Ionizing radiation-in- duced metabolic oxidative stress and prolonged cell in- jury. Cancer Lett 2012; 327 (1–2): 48–60. doi: 10.1016/j. canlet.2011.12.012..
- Lai X, Najafi Redox Interactions in Chemo/Radiation Therapy-induced Lung Toxicity; Mechanisms and Therapy Perspectives. Curr Drug Targets 2022; 23 (13): 1261–76. doi: 10.2174/1389450123666220705123315.
- Xu Q, Zhang H, Qin H, et al. Norcantharidin Sensitizes Colorectal Cancer Cells to Radiotherapy via Reactive Oxy- gen Species-DRP1-Mediated Mitochondrial An- tioxidants (Basel) 2024; 13 (3): 347. doi: 10.3390/antiox 13030347.
- McCann E, O’Sullivan J, Marcone Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Transl Oncol 2021; 14 (1): 100905. doi: 10.1016/j. tranon.2020.100905.
- Tarpey MM, Wink DA, Grisham Methods for detec- tion of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul In- tegr Comp Physiol 2004; 286 (3): R431–44. doi: 10.1152/ ajpregu.00361.2003.
- Engelbrecht I, Horn S, Giesy JP, Pieters A method to de- termine reactive oxygen species production in intestinal and liver cell cultures using the 2′,7′-dichlorodihydrofluorescein diacetate assay. MethodsX 2024; 12: 102615. doi: 10.1016/j. mex.2024.102615.
- Kaplan M, Ates I, Yüksel M, et al. The Role of Oxidative Stress in the Etiopathogenesis of Gluten-sensitive Entero- pathy Di J Med Biochem 2017; 36 (3): 243–50. doi: 10.1515/jomb-2017-0017.
- Kolanjiappan K, Manoharan S, Kayalvizhi Measurement of erythrocyte lipids, lipid peroxidation, antioxidants and osmotic fragility in cervical cancer patients. Clin Chim Acta 2002; 326 (1–2): 143–9. doi: 10.1016/s0009-8981-(02)00300-5.
- Takahashi A, Matsumoto H, Nagayama K, et al. Evidence for the involvement of double-strand breaks in heat-in- duced cell Cancer Res 2004; 64 (24): 8839–45. doi: 10.1158/0008-5472.CAN-04-1876.
- Cristea IM, Degli Esposti Membrane lipids and cell death: an overview. Chem Phys Lipids 2004; 129 (2): 133–60. doi: 10.1016/j.chemphyslip.2004.02.002.
- Rašić I, Rašić A, Akšamij G, Radović The relationship between serum level of malondialdehyde and progression of colorectal cancer. Acta Clin Croat 2018; 57 (3): 411–6. doi: 10.20471/acc.2018.57.03.02.
- Jelic MD, Mandic AD, Maricic SM, Srdjenovic Oxida- tive stress and its role in cancer. J Cancer Res Ther 2021; 17 (1): 22–8. doi: 10.4103/jcrt.JCRT_862_16.
- Lepara Z, Lepara O, Fajkić A, et al. Serum malondialdehyde (MDA) level as a potential biomarker of cancer progression for patients with bladder Rom J Intern Med 2020; 58 (3): 146–52. doi: 10.2478/rjim-2020-0008.
- Janion K, Strzelczyk JK, Walkiewicz KW, et al. Evaluation of Malondialdehyde Level, Total Oxidant/Antioxidant Status and Oxidative Stress Index in Colorectal Cancer P Metabolites 2022; 12 (11): 1118. doi: 10.3390/ metabo12111118.
- Barrera Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN oncology 2012: 137289. https://doi.org/10.5402/2012/137289.
- Shah S, Kalal Oxidative stress in cervical cancer and its response to chemoradiation. Turk J Obstet Gynecol 2019; 16 (2): 124–8. doi: 10.4274/tjod.galenos.2019.19577.
- Chernikova NV, Goroshinskaya I, Frantsiyants EM, et al. Intensity of free-radical reactions in metastasizing cervical canc Journal of Clinical Oncology. Meeting Abstract, 2021 ASCO Annual Meeting 2021; 39 (15_suppl): e17508. DOI:10.1200/JCO.2021.39.15_suppl.e17508.
- Jelić M, Mandić A, Kladar N, et al. Lipid Peroxidation, Antioxidative Defense and Level of 8-hydroxy-2-deoxy- guanosine in Cervical Cancer Patients. J Med Biochem 2018; 37 (3): 336–45. doi: 10.1515/jomb-2017-0053.
- Sharma A, Rajappa M, Satyam A, Sharma Oxidant/anti- oxidant dynamics in patients with advanced cervical cancer: correlation with treatment response. Mol Cell Biochem 2010; 341 (1–2): 65–72. doi: 10.1007/s11010-010-0437-2.
- Alves FM, Jaques HDS, Orrutea JFG, et al. Changes in sys- temic oxidative stress correlate to chemoresistance and poor prognosis features in women with breast cancer, Revista de Senología y Patología Mamaria 2024; 37 (3): 100598. ISSN 0214–1582. https://doi.org/10.1016/j.senol.2024.100598.
- L’vovskaia EI, Volchegorskii IA, Shemiakov SE, Lifshits Spectrophotometric determination of lipid peroxidation end products. Vopr Med Khim. 1991; 37 (4): 92–3. (in Russian).
- Kim PS, Baldwin Intermediates in the folding reactions of small proteins. Annu Rev Biochem 1990; 59: 631–60. doi: 10.1146/annurev.bi.59.070190.003215.
- Freedman The formation of protein disulphide bonds. Curr Opin Struct Biol 1995; 5 (1): 85–91. doi: 10.1016/0959- 440x(95)80013-q.
- Yuan K, Liu Y, Chen HN, et al. Thiol-based redox proteom- ics in cancer Proteomics 2015; 15 (2–3): 287–99. doi: 10.1002/pmic.201400164.
- Kulynskyi VY, Kolesnychenko Systema hlutatyona I. Syn- tez, transport, hlutatyontransferazy, hliutatyonperoksydazy. Byomedytsynskaia khymyia 2009; 55 (3): 255–77.
- Jones DP, Go YM, Anderson CL, et al. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. FASEB J 2004; 18 (11):1246–8. doi: 10.1096/fj.03-0971fje.
- Hu Measurement of protein thiol groups and glutathi- one in plasma. Methods Enzymol 1994; 233: 380–5. doi: 10.1016/s0076-6879(94)33044-1.
- Off JO, Okunade KS, Iwalokun BA, et al. Evaluation of oxidative markers in women with invasive cervical cancer in Lagos, N Ecancer 2021, 15: 1266; www.ecancer. org; doi: https://doi.org/10.3332/ecancer.2021.1266.
- Serkyz YaY, Druzhyna NA, Khryenko AP, et al. Khemyliumy- nystsentsyia krovy pry radyatsyonnom vozdeistvyy. Kyev, Naukova dumka, 176p.
- Lomax ME, Folkes LK, O’Neill P. Biological consequences of radiation-induced DNA damage: relevance to radio- therapy. Clin Oncol (R Coll Radiol) 2013; 25 (10): 578–85. doi: 10.1016/j.clon.2013.06.00
- Jeggo PA, Löbrich DNA double-strand breaks: their cel- lular and clinical impact? Oncogene 2007; 26 (56): 7717–9. doi: 10.1038/sj.onc.1210868.
- Willers H, Dahm-Daphi J, Powell Repair of radiation damage to DNA. Br J Cancer 2004; 90 (7): 1297–301. doi: 10.1038/sj.bjc.6601729.
- Najafzadeh M, Baumgartner A, Gopalan R, et al. In vitrosensitivities to UVA of lymphocytes from patients with co- lon and melanoma cancers and precancerous states in the micronucleus and the Comet assays. Mutagenesis 2012; 27 (3): 351–7. doi: 10.1093/mutage/ger087.
- Santos RA, Teixeira AC, Mayorano MB, et al. Basal levels of DNA damage detected by micronuclei and comet assays in untreated breast cancer patients and healthy Clin Exp Med 2010; 10 (2): 87–92. doi: 10.1007/s10238-009- 0079-4.
- Walczak A, Rusin P, Dziki L, et al. Evaluation of DNA double strand breaks repair effi iency in head and neck cancer. DNA Cell Biol 2012; 31 (3): 298–305. doi: 11089/ dna.2011.1325.
- Gillyard T, Davis DNA double-strand break repair in cancer: A path to achieving precision medicine. Int Rev Cell Mol Biol 2021; 364: 111–37. doi: 10.1016/bs.ircmb. 2021.06.003.
- Kang YH, Lee KA, Kim JH, et al. Mitomycin C modulates DNA-double strand break repair genes in cervical carci- noma c Amino Acids 2010; 9 (5): 1291–8. doi: 10.1007/ s00726-010-0568-5.
- Saha S, Rundle S, Kotsopoulos IC, et al. Determining the Potential of DNA Damage Response (DDR) Inhibitors in Cervical Cancer Cancers (Basel) 2022; 14 (17): 4288. doi: 10.3390/cancers14174288.
- Qin S, Kitty I, Hao Y, et al. Maintaining Genome Integ- rity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Int J Mol Sci 2023; 24 (12): 10212. doi: 10.3390/ ijms241210212.
- Fukunaga H, Yokoya A, Taki Y, et al. Precision Radiotherapy and Radiation Risk Assessment: How Do We Overcome Radiogenomic Diversity? Tohoku J Exp Med 2019; 247 (4): 223–35. doi: 10.1620/tj247.223.
- ReddigA, Rübe CE, Rödiger S, et al. DNA damage assess- ment and potential applications in laboratory diagnostics and precision Journal of Laboratory and Preci- sion Medicine 2018; 3 (4): 1–15. doi: 10.21037/jlpm.2018. 03.06.
- Burlinson The in vitro and in vivo comet assays. Methods Mol Biol 2012; 817: 143–63. doi: 10.1007/978-1-61779- 421-6_8.
- Azqueta A, Slyskova J, Langie SA, et al. Comet assay to measure DNA repair: approach and applications. Front Genet 2014; 5: doi: 10.3389/fgene.2014.00288.
- Gunasekarana V, Raj GV, Chand P. A comprehensive review on clinical applications of comet assay. J Clin Diagn Res 2015; 9 (3): GE01–5. doi: 17860/JCDR/2015/12062.5622.
- Anderson D, Najafzadeh M, Gopalan R, et al. Sensitivity and specificity of the empirical lymphocyte genome sensitivity (LGS) assay: implications for improving cancer diagnos- FASEB J 2014; 28 (10): 4563–70. doi: 10.1096/fj.14- 254748.
- Olive PL, Banáth JP. The comet assay: a method to measure DNA damage in individual Nat Protoc 2006; 1 (1): 23–9. doi: 10.1038/nprot.2006.5.
- Afanasieva KS, Zazhytska MO, Sivolob AV. Mechanisms of DNA exit during neutral and alkaline comet assay. Cytology and genetics 2009; 6: 3–7.
- Collins Investigating oxidative DNA damage and its repair using the comet assay. Mutat Res 2009; 681 (1): 24–32. doi: 10.1016/j.mrrev.2007.10.002.
- Rached E, Schindler R, Beer KT, et al. No predictive value of the micronucleus assay for patients with severe acute reac- tion of normal tissue after radiotherapy. Eur J Cancer 1998; 34 (3): 378–83. doi: 1016/s0959-8049(97)00373-0.
- Scott Chromosomal radiosensitivity, cancer predisposi- tion and response to radiotherapy. Strahlenther Onkol 2000; 176 (5): 229–34. doi: 10.1007/s000660050005.
- Ozsahin M, Crompton NE, Gourgou S, et al. CD4 and CD8 T-lymphocyte apoptosis can predict radiation-induced late toxicity: a prospective study in 399 Clin Cancer Res 2005; 11 (20): 7426–33. doi: 10.1158/1078-0432.CCR- 04-2634.
- Schnarr K, Boreham D, Sathya J, et al. Radiation-induced lymphocyte apoptosis to predict radiation therapy late toxi- city in prostate cancer patients. Int J Radiat Oncol Biol Phys 2009; 74 (5): 1424–30. doi: 11016/j.ij obp.2008.10. 039.
- Foro P, Algara M, Lozano J, et al. Relationship between radiation-induced apoptosis of T lymphocytes and chronic toxicity in patients with prostate cancer treated by radiation therapy: a prospective Int J Radiat Oncol Biol Phys 2014; 88 (5): 1057–63. doi: 10.1016/j.ij obp.2014.01.002.
- Marková E, Somsedíková A, Vasilyev S, et al. DNA repair foci and late apoptosis/necrosis in peripheral blood lym- phocytes of breast cancer patients undergoing radiothera- py. Int J Radiat Biol 2015; 91 (12): 934–45. doi: 13109/ 09553002.2015.1101498.
- Vandevoorde C, Depuydt J, Veldeman L, et al. In vitro cellular radiosensitivity in relationship to late normal tissue reactions in breast cancer patients: a multi-endpoint case- control study. Int J Radiat Biol 2016; 92 (12): 823–36. doi: 10.1080/09553002.2016.1230238.
- Lee TK, Allison RR, O’Brien KF, et al. Lymphocyte radio- sensitivity correlated with pelvic radiotherapy morbidit Int J Radiat Oncol Biol Phys 2003; 57 (1): 222–9. doi: 10.1016/ s0360-3016(03)00411-5.
- van Engeland M, Nieland LJ, Ramaekers FC, et al. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine expo Cytometry 1998; 31 (1): 1–9. doi: 10.1002/(sici)1097-0320(19980101)31: 1<1::aid-cyto1>3.0.co;2-r.
- Riccardi C, Nicoletti Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 2006; 1 (3): 1458-61. doi: 10.1038/nprot.2006.238.
- Han X, Yang Q, Zhang J, Cao Correlation between changes in the number of peripheral blood lymphocytes and survival rate in patients with cervical cancer after radio-chemothe- rapy. Cancer Radiother 2021; 25 (1): 72–6. doi: 10.1016/j. canrad.2020.08.045.
- Gavrilescu MM, Hutanu I, Ioanid N, et al. Clinical Value of Hematological Biomarkers in Uterine Cervical Cancer.
No comments » Add comment