2-DEOXYGLUCOSE PROMOTES ANTI-INFLAMMATORY POLARIZATION OF PERITONEAL MACROPHAGES IN MICE WITH LEWIS LUNG CARCINOMA
Yu.V. Stepanov, Yu.R. Yakshibaeva, D.L. Kolesnik, G.I. Solyanik
R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/oncology.2024.01.044
Summary. Aim: to investigate the effect of 2-deoxyglucose at a wide range of concentrations on the polarization of peritoneal macrophages of intact mice and mice with Lewis lung carcinoma. Object and methods: peritoneal macrophages obtained from intact female C57BL/6 mice and Lewis lung carcinoma-bearing mice. isolation of peritoneal macrophages, determination of nitric oxide production and arginase activity. Results: 2-deoxyglucose does not affect nitric oxide production and arginase activity of peritoneal macrophages of intact mice. 2-deoxyglucose at a concentration of 10 mM significantly (by 17%, p<0.05) increases arginase activity in peritoneal macrophages of mice with Lewis lung carcinoma. Conclusions: It was revealed that peritoneal macrophages in mice with Lewis lung carcinoma have a pro-inflammatory M1 phenotype. The addition of 2-deoxyglucose at a concentration of 10 mM to the incubation medium of peritoneal macrophages obtained from mice with Lewis lung carcinoma promotes a switch in macrophage polarization to the M2 phenotype.
Keywords: peritoneal macrophages, macrophage polarization, 2-deoxyglucose, carcinoma LLC, NO production, arginase activity
References
- Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19 (11): 1423–37. doi: 10.1038/nm.3394.
- McAllister SS, Weinberg RA. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 2014; 16 (8): 717–27. doi: 10.1038/ncb3015.
- Helm O, Held-Feindt J, Grage-Griebenow E, et al. Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer 2014; 135 (4): 843–61. doi: 10.1002/ijc.28736.
- Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33 (3): 119–26. doi: 10.1016/j.it.2011.12.001.
- Singh S, Mehta N, Lilan J, et al. Initiative action of tumorassociated macrophage during tumor metastasis. Biochimie Open 2017; 4: 8–18. doi: 10.1016/j.biopen.2016.11.002.
- Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci 2014; 105 (1): 1–8. doi: 10.1111/cas.12314.
- Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell 2015; 27 (4): 462–72. doi: 10.1016/j.ccell.2015.02.015.
- Wang S, Yang Y, Ma P, et al. Landscape and perspectives of macrophage -targeted cancer therapy in clinical trials. Mol Ther Oncolytics 2022; 24: 799-813. doi: 10.1016/j.omto.2022.02.019.
- Ohshima K, Morii E. Metabolic reprogramming of cancer cells during tumor progression and metastasis. Metabolites 2021; 11 (1): 28. doi: 10.3390/metabo11010028
- Roda N, Gambino V, Giorgio M. Metabolic constrains rule metastasis progression. Cells 2020; 9: 2081. doi:10.3390/cells9092081
- Singh R, Gupta V, Kumar A, et al. 2-Deoxy-D-Glucose: A novel pharmacological agent for killing hypoxic tumor cells, oxygen dependence-lowering in Covid-19, and other pharmacological activities. Adv Pharmacol Pharm Sci 2023; 2023: 9993386. doi: 10.1155/2023/9993386.
- DeSalvo J, Kuznetsov JN, Du J, et al. Inhibition of Akt potentiates 2-DG – induced apoptosis via downregulation of UPR in acute lymphoblastic leukemia. Mol Cancer Res 2012; 10 (7): 969–78. doi: 10.1158/1541-7786.MCR-12-0125.
- Xi, M. Kurtoglu, T. J. Lampidis. The wonders of 2-deoxy-D-glucose. IUBMB Life 2014; 66 (2): 110–21. doi: 10.1002/iub.1251.
- Singh S, Pandey S, Chawla AS, et al. Dietary 2-deoxy-D-glucose impairs tumour growth and metastasis by inhibiting angiogenesis. Eur J Cancer 2019; 123: 11–24. doi: 10.1016/j.ejca.2019.09.005.
- Krawczyk CM, Holowka T, Sun J, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 2010; 115 (23): 4742–9. doi: 10.1182/blood-2009-10-249540.
- Van den Bossche J, Baardman J, Otto NA, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep 2016; 17 (3): 684–96. doi: 10.1016/j.celrep.2016.09.008.
- Freemerman AJ, Johnson AR, Sacks GN, et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 2014; 289 (11): 7884–96. doi: 10.1074/jbc.M113.522037.
- Wang F, Zhang S, Vuckovic I, et al. Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metab 2018; 28 (3): 463–75.e4. doi: 10.1016/j.cmet.2018.08.012.
- Jha AK, Huang SC, Sergushichev A, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 2015; 42 (3): 419–30. doi: 10.1016/j.immuni.2015.02.005.
- Balsa E, Perry EA, Bennett CF, et al. Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death. Nat Commun 2020; 11 (1): 2714. doi: 10.1038/s41467-020-16423-1.
- Liu S, Yang J, Wu Z. The Regulatory Role of α-Ketoglutarate Metabolism in Macrophages. Mediators Inflamm 2021; 2021: 5577577. doi: 10.1155/2021/5577577.
No comments » Add comment