B-CELL LYMPHOID NEOPLASMS IN THE 5TH EDITION OF THE WHO CLASSIFICATION OF HEMATOLYMPHOID TUMORS (2022).

1. General principles of classification. Precursor B-cell neoplasms


A.A. Philchenkov1, M.P. Zavelevich1, I.V. Abramenko2

1 R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine,
2 National Research Center for Radiation Medicine, NAMS of Ukraine, Kyiv, Ukraine

DOI: https://doi.org/10.15407/oncology.2023.02.089

 

Tumors of lymphoid and hematopoietic tissues are among the most prevalent malignancies. The tumors originating from lymphoid cells are of the utmost heterogeneity. The development of the generally accepted classifi ation sys- tem for this group of the malignancies became a priority task and its clinical implementation has been already advantageous. The in-depth insight into the pathogenesis of lymphoid neoplasms requires the continuous revision of the classification of these diseases. In 2022, World Health Organization specialists prepared the regular 5th issue of the Classification of Hematolymphoid Tumors representing a revision of the previous one (2017). The basic provisions of the new classification concerning B-cell lymphoid neoplasms are disclosed in this review composed of two parts. The review focuses on the principal changes as compared with the previous version of the classification. The first part of the review relates to two major categories such as tumor-like lesions with B-cell predominance and precursor B-cell neoplasms. The laboratory criteria important for the final diagnosis of the various nosological forms are discussed. Mature B-cell neoplasms, plasma cell neoplasms and other diseases with paraproteins will be presented in the next issue. the classification of these diseases. In 2022, World Health Organization specialists prepared the regular 5th issue of the Classification of Hematolymphoid Tumors representing a revision of the previous one (2017). The basic provisions of the new classification concerning B-cell lymphoid neoplasms are disclosed in this review composed of two parts. The review focuses on the principal changes as compared with the previous version of the classification. The first part of the review relates to two major categories such as tumor-like lesions with B-cell predominance and precursor B-cell neoplasms. The laboratory criteria important for the final diagnosis of the various nosological forms are discussed. Mature B-cell neoplasms, plasma cell neoplasms and other diseases with paraproteins will be presented in the next issue.

 

References

  1. Rappaport Tumors of the Hematopoietic System. Atlas of Tumor Pathology, Section 3. Washington, DC: Armed Forces Institute of Pathology, 1966.
  2. Dorfman RF. Classification of non-Hodgkin’s Lancet 1974; 303 (7869): 1295–6. doi: 10.1016/s0140-6736(74)90061-0.
  3. Bennett M, Farrer-Brown G, Henry K, et al. Classifi ation of non-Hodgkin’s Lancet 1974; 304 (7877): 405–8. doi: 10.1016/S0140-6736(74)91786-3.
  4. Kay Classification of non-Hodgkin’s lymphomas. Lancet 1974; 304 (7880): 586. doi: 10.1016/s0140-6736(74)91901-1.
  5. Braylan RC, Jaff ES, Berard CW. Malignant lymphomas: current classifi ation and new Pathol Annu 1975; 10: 213–70. PMID: 1101171.
  6. Lennert K, Stein H, Kaiserling Cytological and functional criteria for the classification of malignant lymphomata. Br J Cancer 1975; 2 (Suppl): 29–43. PMID: 52366.
  7. Lukes RJ, Collins New approaches to the classification of the lymphomata. Br J Cancer 1975; 2 (Suppl): 1–28. PMID: 1101914.
  8. Mat G, Rappaport H, O’Conor GT, et al. Histological and cytological typing of neoplastic diseases of haematopoietic and lymphoid International Histological Classification of Tumors, No 14. Geneva: World Health Organization, 1976. ISBN: 9241760141.
  9. Higby A practical classification of lymphomas. N Engl J Med 1979; 300 (22): 1283. doi: 10.1056/NEJM197905313 002234.
  10. Suchi T, Tajima K, Nanba K, et al. Some problems on the histopathological diagnosis of non-Hodgkin’s malignant lymphoma — a proposal of a new Acta Pathol Jpn 1979; 29 (5): 755–76. doi: 10.1111/j.1440-1827.1979.tb00942.x.
  11. Lennert K, Collins RD, Lukes Concordance of the Kiel and Lukes-Collins classifi ations of non-Hodgkin’s lymphomas. Histopathology 1983; 7 (4): 549–59. doi: 10.1111/ j.1365-2559.1983.tb02267.x
  12. National Cancer Institute sponsored study of classifications of non-Hodgkin’s lymphomas: summary and description of a working formulation for clinical us The NonHodgkin’s Lymphoma Pathologic Classification Project. Cancer 1982; 49 (10): 2112–35. doi: 10.1002/1097-0142(19820515)49:10<2112::aid-cncr2820491024>3.0.co;2-2.
  13. Lennert K, Feller A Histopathology of Non-Hodgkin’s Lymphomas (Based on the Updated Kiel Classification), ed 2. Berlin, Heidelberg: Springer-Verlag, 1992. ISBN: 978-3642971891.
  14. Harris NL, Jaff ES, Stein H, et al. A revised EuropeanAmerican classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 1994; 84 (5): 1361–92. PMID:
  15. World Health Organization Classifi ation of T Pathology and Genetics: Tumours of the Haematopoietic and Lymphoid Tissues. Jaff ES, Harris NL, Stein H, Vardiman JW (eds). Lyon: IARC, 2001. ISBN-13: 978-9283224112.
  16. World Health Organization Classifi ation of Tumours of Haematopoietic and Lymphoid T 4th ed, vol 2. Swerdlow SH, Campo E, Harris NL, et al. (eds). Lyon: IARC, 2008. ISBN-13: 978-9283224310.
  17. World Health Organization Classification of Tumours of Haematopoietic and Lymphoid T Revised 4th ed, vol 2. Swerdlow SH, Campo E, Harris NL, et al. (eds). Lyon: IARC, 2017. ISBN-13: 978-9283244943.
  18. Alaggio R, Amador C, Anagnostopoulos I, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Ne Leukemia. 2022; 36 (7): 1720–48. doi: 10.1038/s41375-02201620-2.
  19. Campo E, Jaffe ES, Cook JR, et al. The International Consensus Classifi ation of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Blood 2022; 140 (11): 1229–53. doi: 10.1182/blood.2022015851.
  20. Arber DA, Orazi A, Hasserjian RP, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic Blood 2022; 140 (11): 1200–28. doi: 10.1182/ blood.2022015850.
  21. Bruford EA, Braschi B, Denny P, et al. Guidelines for human gene nomenc Nat Genet 2020; 52 (8): 754–8. doi: 10.1038/s41588-020-0669-3.
  22. Lanzillotta M, Mancuso G, Della-Torre Advances in the diagnosis and management of IgG4 related disease. BMJ 2020; 369: m1067. doi: 10.1136/bmj.m1067.
  23. Chen LYC, Mattman A, Seidman MA, et al. IgG4-related disease: what a hematologist needs to know. Haematologica 2019; 104 (3): 444–55. doi: 3324/haematol.2018. 205526.
  24. Mattoo H, Mahajan VS, Maehara T, et al. Clonal expansion of CD4(+) cytotoxic T lymphocytes in patients with IgG4-related J Allergy Clin Immunol 2016; 138 (3): 825–38. doi: 10.1016/j.jaci.2015.12.1330.
  25. Fajgenbaum DC, Uldrick TS, Bagg A, et al. International, evidence-based consensus diagnostic criteria for HHV8-negative/idiopathic multicentric Castleman disease. Blood 2017; 129 (12): 1646–57. doi: 11182/blood-201610-746933.
  26. Katano H, Sata T. Human herpesvirus 8 virology, epidemiology and related Jpn J Infect Dis 2000; 53 (4): 137–55. PMID: 11056556.
  27. Tałasiewicz K, Czachowska A, Śmiałek-Kania K, et al. Progressive transformation of germinal centers: an illustration of two clinical c Ann Hematol 2018; 97 (6): 1081–3. doi: 10.1007/s00277-018-3257-1.
  28. Hartmann S, Winkelmann R, Ryan A, et al. Immunoarchitectural patterns of progressive transformation of germinal centers with and without nodular lymphocyte-predominant Hodgkin Hum Pathol 2015; 46 (11): 1655–61. doi:  10.1016/j.humpath.2015.07.006.
  29. Laville D, Martin L, Chauleur C, et al. Florid lymphoid hyperplasia or lymphoma-like lesion of the lower genital tract: A 35-year literature review in view of the new WHO classifi Int J Gynecol Pathol 2022; 41 (5): 459–69. doi: 10.1097/PGP.0000000000000830.
  30. Young RH, Harris NL, Scully Lymphoma-like lesions of the lower female genital tract: A report of 16 cases. Int J Gynaec Pathol 1985; 4 (4): 289–99. doi: 10.1097/00004347198512000-00002.
  31. Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic Haematologica 2016; 101 (4): 407–16. doi: 10.3324/haematol.2015.141101.
  32. Kulis J, dek Ł, Słota Ł, et al. Commonly assessed markers in childhood BCP-ALL diagnostic panels and their association with genetic aberrations and outcome prediction. Genes (Basel) 2022; 13 (8): 137 doi: 10.3390/genes13081374.
  33. Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A, et al. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic Nat Commun 2016; 7: 11790. doi: 10.1038/ ncomms11790.
  34. Zaliova M, Kotrova M, Bresolin S, et al. A novel B-cell precursor leukemia subtype associated with the CD27/CD44 Genes Chromosomes Cancer 2017; 56 (8): 608–16. doi: 10.1002/gcc.22464.
  35. Tsagarakis NJ, Papadhimitriou SI, Pavlidis D, et al. Flow cytometric predictive scoring systems for common fusions ETV6/RUNX1, BCR/ABL1, TCF3/PBX1 and rearrangements of the KMT2A gene, proposed for the initial cytogenetic approach in cases of B-acute lymphoblastic leuke Int J Lab Hematol 2019; 41 (3): 364–72. doi: 10.1111/ ij  12983.
  36. Moorman AV, Ensor HM, Richards SM, et al. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised Lancet Oncol 2010; 11 (5): 429–38. doi: 10.1016/S14702045(10)70066-8.
  37. Mullighan CG, Su X, Zhang J, et al. Children’s Oncology Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360 (5): 470–80. doi: 10.1056/NEJMoa0808253.
  38. Tasian SK, Loh ML, Hunger SP. Philadelphia chromosomelike acute lymphoblastic Blood 2017; 130 (19): 2064–72. doi: 10.1182/blood-2017-06-743252.
  39. Stephens PJ, Greenman CD, Fu B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer Cell 2011; 144 (1): 27–40. doi: 10.1016/j.cell.2010.11.055.
  40. Rand V, Parker H, Russell LJ, et al. Genomic characterization implicates iAMP21 as a likely primary genetic event in childhood B-cell precursor acute lymphoblastic leukemia. Blood 2011; 117 (25): 6848–55. doi: 11182/blood-201101-329961.
  41. Li Y, Schwab C, Ryan S, et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic Nature 2014; 508 (7494): 98–102. doi: 10.1038/ nature13115.
  42. Heerema NA, Carroll AJ, Devidas M, et al. Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk children’s oncology group studies: a report from the children’s oncology J Clin Oncol 2013; 31 (27): 3397–402. doi: 10.1200/JCO.2013.49.1308.
  43. Zerkalenkova E, Mikhaylova E, Lebedeva S, et al. Quantification of NG2-positivity for the precise prediction of KMT2A gene rearrangements in childhood acute Genes Chromosomes Cancer 2021; 60 (2): 88–99. doi: 10.1002/ gcc.22915.
  44. El Chaer F, Keng M, Ballen KK. MLL-rearranged acute lymphoblastic Curr Hematol Malig Rep 2020; 15 (2): 83–9. doi: 10.1007/s11899-020-00582-5.
  45. Huang Y, Bourquin Targeting the oncogenic activity of TCF3-HLF in leukemia. Mol Cell Oncol 2020; 7 (3): 1709391. doi: 10.1080/23723556.2019.1709391.
  46. Yen HJ, Chen SH, Chang TY, et al. Pediatric acute lymphoblastic leukemia with t(1;19)/TCF3-PBX1 in Taiwan. Pediatr Blood Cancer 2017; 64 (10). doi: 1002/pbc.26557.
  47. Guenzel AJ, Smadbeck JB, Golden CL, et al. Clinical utility of next generation sequencing to detect IGH/IL3 rearrangements [t(5;14)(q31;q32.1)] in B-lymphoblastic leukemia/lymphoma. Ann Diagn Pathol 2021; 53: 151761. doi: 10.1016/j.anndiagpath.2021.151761.
  48. Schinnerl D, Mejstrikova E, Schumich A, et al. CD371 cell surface expression: a unique feature of DUX4-rearranged acute lymphoblastic Haematologica 2019; 104 (8): e352–5. doi: 10.3324/haematol.2018.214353.
  49. Gu Z, Churchman M, Roberts K, et al. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic Nat Commun 2016; 7: 13331. doi: 10.1038/ ncomms13331.
  50. Hirabayashi S, Ohki K, Nakabayashi K, et al. ZNF384-related fusion genes defi e a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic Haematologica 2017; 102 (1): 118–29. doi: 10.3324/haematol.2016.151035.
  51. Hormann FM, Hoogkamer AQ, Beverloo HB, et al. NUTM1 is a recurrent fusion gene partner in B-cell precursor acute lymphoblastic leukemia associated with increased expression of genes on chromosome band 131-12.2. Haematologica 2019; 104 (10): e455–9. doi: 10.3324/haematol.2018.206961.
  52. Wagener R, López C, Kleinheinz K, et al. IG-MYC+ neoplasms with precursor B-cell phenotype are molecularly distinct from Burkitt Blood 2018; 132 (21): 2280–5. doi:  10.1182/blood-2018-03-842088.
  53. Gu Z, Churchman ML, Roberts KG, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet 2019; 51 (2): 296–307. doi: 11038/s41588-0180315-5.

No comments » Add comment