L.I. Makovetska, E.A. Domina
RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine


Summary. Radiation therapy (RT) plays a key role in the treatment of malignant tumor diseases in the majority of cancer patients. Unfortunately, despite the improvement of RT methods and tools (in particular, its conformal strategy) and modern methods of dosimetry, RT has a harmful effect not only on the tumor, but also on normal tissues surrounding the tumor. In some cases, this leads to the development of radiation reactions and complications, the treatment of which is a long, sometimes ineffective process. One of the strategies to prevent or reduce these complications is the use of natural radioprotectors, among which the pineal hormone melatonin deserves attention. It is a powerful antioxidant with immunoregulatory properties that can reduce toxicity caused by ionizing radiation (IR) in various organs. These effects are mediated by the modulatory effects of melatonin at different levels of tissue response to IR. The most important are the effects on the DNA repair system, antioxidant enzymes, immune cells, cytokine secretion, transcription factors and protein kinases. The data highlighted in this review indicate that melatonin has great potential to prevent the side effects of RT and its inclusion as an adjuvant in RT would enable the use of higher radiation doses in treatment. In addition, due to the antitumor and radiosensitizing properties of melatonin, its use can increase tumor damage. Therefore, melatonin is a promising radioprotective agent of normal tissues surrounding the tumor with the effect of increasing the therapeutic efficiency/toxicity ratio of chemoradiation treatment of patients.


  1. Ivankova VS, Stolyarova OYu, Baranovska LM, et al. Radiation therapy of the XXI century. Clinical oncology 2018; 8 (2 (30): 111–5
  2. Alonso-González C, González-Abalde C, Menéndez-Menéndez J, et al. Melatonin modulation of radiation-induced molecular changes in MCF-7 human breast cancer cells. Biomedicines 2022; 10 (5): 1088. doi: 10.3390/biomedicines10051088.
  3. Chung SI; Smart DK; Chung EJ; Citrin DE. Radioprotection as a Method to Enhance the Therapeutic Ratio of Radiotherapy. In book: In Increasing the Therapeutic Ratio of Radiotherapy. Tofilon PJ, Camphausen K (eds). Springer, 2017: 79– doi:10.1007/978-3-319-40854-5_4.
  4. Najafi M, Motevaseli E, Shirazi A, et al. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int J Radiat Biol 2018; 94 (4): 335– doi: 10.1080/09553002.2018.1440092.
  5. González A, Alonso-González C, González-González A, et al. Melatonin as an Adjuvant to Antiangiogenic Cancer Treatments. Cancers (Basel) 2021; 13 (13): 3263. doi: 10.3390/cancers13133263.
  6. Chancellor JC, Scott GB, Sutton JP. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit. Life (Basel) 2014; 4 (3): 491– doi: 10.3390/life4030491.
  7. Alonso-González C, González A, Menéndez-Menéndez J, et al. Melatonin as a Radio-Sensitizer in Cancer. Biomedicines 2020; 8 (8): doi: 10.3390/biomedicines8080247.
  8. Liu L, Liang Z, Ma S, et al. Radioprotective countermeasures for radiation injury (Review). Mol Med Rep 2023; 27 (3): 66. doi: 10.3892/mmr.2023.12953.
  9. Zhao L, Bao C, Shang Y, et al. The Determinant of DNA Repair Pathway Choices in Ionising Radiation-Induced DNA Double-Strand Breaks. Biomed Res Int 2020; 2020: 4834965. doi: 10.1155/2020/4834965.
  10. Liu J, Bi K, Yang R, et al. Role of DNA damage and repair in radiation cancer therapy: a current update and a look to the future. Int J Radiat Biol 2020; 96 (11): 1329–38. doi: 10.1080/09553002.2020.1807641
  11. Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020; 5 (1): 60. doi: 10.1038/s41392-020-0150-x.
  12. Vijayalaxmi, Reiter RJ, Tan DX, et al. Melatonin as a radioprotective agent: a review. Int J Radiat Oncol Biol Phys 2004; 59 (3): 639–53. doi: 10.1016/j.ijrobp.2004.02.006.
  13. Zetner D, Andersen LP, Rosenberg J. Melatonin as Protection Against Radiation Injury: A Systematic Review. Drug Res (Stuttg) 2016; 66 (6): 281–96. doi: 10.1055/s-0035-1569358.
  14. Zharinov GM, Bogomolov OA, Chepurnaya IV, et al. Melatonin increases overall survival of prostate cancer patients with poor prognosis after combined hormone radiation treatment. Oncotarget 2020; 11 (41): 3723–9. doi: 10.18632/oncotarget.27757.
  15. Gurunathan S, Qasim M, Kang MH, Kim JH. Role and Therapeutic Potential of Melatonin in Various Type of Cancers. Onco Targets Ther 2021; 14: 2019–52. doi: 10.2147/OTT.S298512.
  16. Moloudizargari M, Moradkhani F, Hekmatirad S, et al. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci 2021; 267: 118934. doi: 10.1016/j.lfs.2020.118934.
  17. Arendt J, Aulinas A. Physiology of the Pineal Gland and Melatonin. In: Endotext [Internet]. Feingold KR, Anawalt B, Blackman MR, et al., (eds). South Dartmouth (MA):, Inc. 2022; 2000-. PMID: 31841296
  18. Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev 2005; 9 (1): 11–24. doi: 10.1016/j.smrv.2004.08.001.
  19. Lu X, Yu S, Chen G, et al. Insight into the roles of melatonin in bone tissue and bone‑related diseases (Review). Int J Mol Med 2021; 47 (5): 82. doi: 10.3892/ijmm.2021.4915.
  20. Lu KH, Lin RC, Yang JS, et al. Molecular and Cellular Mechanisms of Melatonin in Osteosarcoma. Cells 2019; 8 (12): 1618. doi: 10.3390/cells8121618.
  21. Ahmad SB, Ali A, Bilal M, et al. Melatonin and Health: Insights of Melatonin Action, Biological Functions, and Associated Disorders. Cell Mol Neurobiol 2023; 43 (6): 2437–58. doi: 10.1007/s10571-023-01324-w.
  22. Ackermann K, Stehle JH. Melatonin synthesis in the human pineal gland: Advantages, implications,  and  Chronobiology International 2006; 23 (1–2), 369–79.
  23. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, et al. Melatonin membrane receptors in peripheral tissues: Distribution  and  Molecular and Cellular Endocrinology 2012; 351 (2): 152–66.
  24. Pardridge WM, Mietus LJ. Transport of albumin-bound melatonin through the blood-brain barrier. J Neurochem. 1980; 34 (6): 1761–3. doi: 10.1111/j.1471-4159.1980.tb11272.x.
  25. Jockers R, Delagrange P, Dubocovich ML, et al. Update on melatonin receptors: IUPHAR Review 20. Br J Pharmacol 2016; 173 (18): 2702–25. doi: 10.1111/bph.13536.
  26. Bolliet V, Ali MA, Lapointe FJ, Falcón J. Rhythmic melatonin secretion in different teleost species: an in vitro study. J Comp Physiol B 1996; 165 (8): 677–83. doi: 10.1007/BF00301136.
  27. Ekmekcioglu C. Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 2006; 60 (3): 97–108. doi: 10.1016/j.biopha.2006.01.002.
  28. Carrillo-Vico A, García-Pergañeda A, Naji L, et al. Expression of membrane and nuclear melatonin receptor mRNA and protein in the mouse immune system. Cell Mol Life Sci 2003; 60 (10): 2272– doi: 10.1007/s00018-003-3207-4.
  29. Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20 (5): 1223. doi: 10.3390/ijms20051223. .
  30. Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 2009; 44 (4): 175– doi: 10.1080/10409230903044914.
  31. Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res. 2013; 54 (3): 245– doi: 10.1111/jpi.12010.
  32. Purushothaman A, Sheeja AA, Janardanan D. Hydroxyl radical scavenging activity of melatonin and its related indolamines. Free Radic Res 2020; 54 (5): 373– doi: 10.1080/10715762.2020.1774575.
  33. Majsterek I, Gloc E, Blasiak J, Reiter RJ. A comparison of the action of amifostine and melatonin on DNA-damaging effects and apoptosis induced by idarubicin in normal and cancer cells. J Pineal Res 2005; 38 (4): 254– doi: 10.1111/j.1600-079X.2005.00197.x.
  34. Karbownik M, Reiter RJ. Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc Soc Exp Biol Med 2000; 225 (1): 9– doi: 10.1177/153537020022500102.
  35. Abbaszadeh A, Haddadi GH, Haddadi Z. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature). J Biomed Phys Eng 2017; 7 (2): 127– PMID: 28580334
  36. Rodriguez C, Mayo JC, Sainz RM, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 2004; 36 (1): 1– doi: 10.1046/j.1600-079x.2003.00092.x.
  37. Karbownik M, Garcia JJ, Lewiński A, Reiter RJ. Carcinogen-induced, free radical-mediated reduction in microsomal membrane fluidity: reversal by indole-3-propionic acid. J Bioenerg Biomembr 2001; 33 (1): 73– doi: 10.1023/a:1005628808688. .
  38. Reiter RJ, Rosales-Corral S, Tan DX, et al. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci 2017; 74 (21): 3863– doi: 10.1007/s00018-017-2609-7.
  39. Venegas C, García JA, Escames G, et al. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res 2012; 52 (2): 217– doi: 10.1111/j.1600-079X.2011.00931.x.
  40. García JJ, López-Pingarrón L, Almeida-Souza P, et al. Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J Pineal Res 2014; 56 (3): 225– doi: 10.1111/jpi.12128.
  41. Jou MJ, Jou SB, Chen HM, et al. Critical role of mitochondrial reactive oxygen species formation in visible laser irradiation-induced apoptosis in rat brain astrocytes (RBA-1). J Biomed Sci 2002; 9 (6 Pt 1): 507– doi: 10.1159/000064723.
  42. Majidinia M, Sadeghpour A, Mehrzadi S, et al. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res 2017; 63 (1). doi: 10.1111/jpi.12416.
  43. Benítez-King G, Ríos A, Martínez A, Antón-Tay F. In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin. Biochim Biophys Acta 1996; 1290 (2): 191– doi: 10.1016/0304-4165(96)00025-6.
  44. Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 2001; 34 (2): 237– doi: 10.1385/CBB:34:2:237.
  45. Tan DX, Reiter RJ, Manchester LC, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2 (2): 181– doi: 10.2174/1568026023394443.
  46. Kleszczyński K, Zillikens D, Fischer TW. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (γ-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK). J Pineal Res 2016; 61 (2): 187– doi: 10.1111/jpi.12338.
  47. Kireev RA, Tresguerres AC, Castillo C, et al. Effect of exogenous administration of melatonin and growth hormone on pro-antioxidant functions of the liver in aging male rats. J Pineal Res 2007; 42 (1): 64– doi: 10.1111/j.1600-079X.2006.00385.x.
  48. Najafi M, Fardid R, Takhshid MA, et al. Radiation-Induced Oxidative Stress at Out-of-Field Lung Tissues after Pelvis Irradiation in Rats. Cell J 2016; 18 (3): 340– doi: 10.22074/cellj.2016.4561.
  49. Galano A, Tan DX, Reiter RJ. Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules 2018; 23 (3): 530. doi: 10.3390/molecules23030530.
  50. Reiter RJ. Melatonin: Lowering the High Price of Free Radicals. News Physiol Sci 2000; 15: 246–50. doi: 10.1152/physiologyonline.2000.15.5.246.
  51. Joseph TT, Schuch V, Hossack DJ, et al. Melatonin: the placental antioxidant and anti-inflammatory. Front Immunol. 2024; 15: doi: 10.3389/fimmu.2024.1339304.
  52. Li Y, Li S, Zhou Y, et al. Меlаtonin for the prevention and treatment of cancer. Oncotarget 2017; 8 (24): 39896– doi: 10.18632/oncotarget.16379.
  53. Wang J, Xiao X, Zhang Y, et al. Simultaneous modulation of COX-2, p300, Akt, and Apaf-1 signaling by melatonin to inhibit proliferation and induce apoptosis in breast cancer cells. J Pineal Res 2012; 53 (1): 77– doi: 10.1111/j.1600-079X.2012.00973.x.
  54. Subramanian P, Mirunalini S, Dakshayani KB, et al. Prevention by melatonin of hepatocarcinogenesis in rats injected with N-nitrosodiethylamine. J Pineal Res 2007; 43 (3): 305– doi: 10.1111/j.1600-079X.2007.00478.x.
  55. Gatti G, Lucini V, Dugnani S, et al. Antiproliferative and pro-apoptotic activity of melatonin analogues on melanoma and breast cancer cells. Oncotarget 2017; 8 (40): 68338–53. doi: 10.18632/oncotarget.20124.
  56. Koşar PA, Nazıroğlu M, Övey İS, Çiğ B. Synergic Effects of Doxorubicin and Melatonin on Apoptosis and Mitochondrial Oxidative Stress in MCF-7 Breast Cancer Cells: Involvement of TRPV1 Channels. J Membr Biol 2016; 249 (1-2): 129–40. doi: 10.1007/s00232-015-9855-0.
  57. Chu LW, John EM, Yang B, et al. Measuring serum melatonin in postmenopausal women: Implications for epidemiologic studies and breast cancer studies. PLoS One. 2018; 13 (4): e0195666. doi: 10.1371/journal.pone.0195666.
  58. Khoory R, Stemme D. Plasma melatonin levels in patients suffering from colorectal carcinoma. J Pineal Res 1988; 5 (3): 251– doi: 10.1111/j.1600-079x.1988.tb00651.x.
  59. Cucielo MS, Carvalho Cesário R, Spaulonci Silveira H, et al. Melatonin Reverses the Warburg-Type Metabolism and Reduces Mitochondrial Membrane Potential of Ovarian Cancer Cells Independent of MT1 Receptor Activation Molecules 2022; 27 (14): 4350. doi: 10.3390/molecules27144350.
  60. Talib WH, Alsayed AR, Abuawad A, et al. Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021; 26 (9): 2506. doi: 10.3390/molecules26092506.
  61. Bhattacharya S, Patel KK, Dehari D, et al. Melatonin and its ubiquitous anticancer effects. Mol Cell Biochem 2019; 462 (1–2): 133– doi: 10.1007/s11010-019-03617-5.
  62. Wu J, Tan Z, Li H, et al. Melatonin reduces proliferation and promotes apoptosis of bladder cancer cells by suppressing O-GlcNAcylation of cyclin-dependent-like kinase 5. J Pineal Res 2021; 71 (3): e12765. doi: 10.1111/jpi.12765.
  63. Woo SM, Seo SU, Min KJ, Kwon TK. Melatonin induces apoptotic cell death through Bim stabilization by Sp1-mediated OTUD1 upregulation. J Pineal Res 2022; 72 (1): e12781. doi: 10.1111/jpi.12781.
  64. Putta CL, Eswar K, Rengan AK. Melatonin: Avenues in cancer therapy and its nanotechnological advancements. MedComm – Biomaterials and Applications 2023; 2 (3): е58.
  65. Sánchez-Sánchez AM, Martín V, García-Santos G, et al. Intracellular redox state as determinant for melatonin antiproliferative vs cytotoxic effects in cancer cells. Free Radic Res 2011; 45 (11–12): 1333–41. doi: 10.3109/10715762.2011.623700
  66. Cabrera J, Negrín G, Estévez F, et al. Melatonin decreases cell proliferation and induces melanogenesis in human melanoma SK-MEL-1 cells. J Pineal Res 2010; 49 (1): 45–54. doi: 10.1111/j.1600-079X.2010.00765.x.
  67. Hill SM, Belancio VP, Dauchy RT, et al. Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer 2015; 22 (3): R183– doi: 10.1530/ERC-15-0030.
  68. González-González A, González A, Rueda N, et al. Melatonin Enhances the Usefulness of Ionizing Radiation: Involving the Regulation of Different Steps of the Angiogenic Process. Front Physiol 2019; 10: 879. doi: 10.3389/fphys.2019.00879.
  69. Cerezo AB, Hornedo-Ortega R, Álvarez-Fernández MA, et al. Inhibition of VEGF-Induced VEGFR-2 Activation and HUVEC Migration by Melatonin and Other Bioactive Indolic Compounds. Nutrients 2017; 9 (3): 249. doi: 10.3390/nu9030249.
  70. Lissoni P, Rovelli F, Malugani F, et al. Anti-angiogenic activity of мelatonin in advanced cancer patients. Neuro Endocrinol Lett 2001; 22 (1): 45-47. PMID: 11335879.
  71. Zare H, Shafabakhsh R, Reiter RJ, Asemi Z. Melatonin is a potential inhibitor of ovarian cancer: molecular aspects. J Ovarian Res 2019; 12 (1): 26. doi: 10.1186/s13048-019-0502-8.
  72. Liu D, Shi K, Fu M, Chen F. Melatonin indirectly decreases gastric cancer cell proliferation and invasion via effects on cancer-associated fibroblasts. Life Sci 2021; 277: 119497. doi: 10.1016/j.lfs.2021.119497.
  73. Gu H, Shen Q, Mei D, et al. Melatonin inhibits TE-1 esophageal cancer cells metastasis by suppressing the NF-κB signaling pathway and decreasing MMP-9. Ann Clin Lab Sci 2020; 50 (1): 65– PMID: 32161013.
  74. Wang L, Su Y, Choi WS. Melatonin suppresses oral squamous cell carcinomas migration and invasion through blocking FGF19/FGFR 4 signaling pathway. Int J Mol Sci 2021; 22 (18): 9907. doi: 10.3390/ijms22189907.
  75. Tian QX, Zhang ZH, Ye QL, et al. Melatonin inhibits migration and invasion in LPS-stimulated and -unstimulated prostate cancer cells through blocking multiple EMT-relative pathways. J Inflamm Res 2021; 14: 2253– doi: 10.2147/JIR.S305450.
  76. Oh BS, Im E, Lee HJ, et al. Inhibition of TMPRSS4 mediated epithelial-mesenchymal transition is critically involved in antimetastatic effect of melatonin in colorectal cancers. Phytother Res. 2021; 35 (8): 4538–46. doi: 10.1002/ptr.7156.
  77. Ren W, Liu G, Chen S, et al. Melatonin signaling in T cells: Functions and applications. J Pineal Res 2017; 62 (3). doi: 10.1111/jpi.12394.
  78. Minocha T, Das M, Rai V, et al. Melatonin induces apoptosis and cell cycle arrest in cervical cancer cells via inhibition of NF-κB pathway. 2022; 30 (4): 1411–29. doi: 10.1007/s10787-022-00964-6.
  79. Sainz RM, Mayo JC, Rodriguez C, et al. Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. CMLS 2003; 60 (7), 1407–26.
  80. Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 2014; 57 (2): 131–46. doi: 10.1111/jpi.12162.
  81. Martín M, Macías M, León J, et al. Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. Int J Biochem Cell Biol 2002; 34 (4): 348– doi: 10.1016/s1357-2725(01)00138-8.
  82. Bizzarri M, Proietti S, Cucina A, Reiter RJ. Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review. Expert Opin Ther Targets 2013; 17 (12): 1483– doi: 10.1517/14728222.2013.834890.
  83. Shih YH, Chiu KC, Wang TH, et al. Effects of melatonin to arecoline-induced reactive oxygen species production and DNA damage in oral squamous cell carcinoma. J Formos Med Assoc 2021; 120 (1 Pt 3): 668– doi: 10.1016/j.jfma.2020.07.037.
  84. Chok KC, Koh RY, Ng MG, et al. Melatonin Induces Autophagy via Reactive Oxygen Species-Mediated Endoplasmic Reticulum Stress Pathway in Colorectal Cancer Cells. Molecules 2021; 26 (16): 5038. doi: 10.3390/molecules26165038.
  85. Sang X, Li L, Rui C, et al. Induction of EnR stress by Melatonin enhances the cytotoxic effect of Lapatinib in HER2-positive breast cancer. Cancer Lett 2021; 518: 82– doi: 10.1016/j.canlet.2021.06.011.
  86. Alonso-González C, González A, Martínez-Campa C, et al. Melatonin enhancement of the radiosensitivity of human breast cancer cells is associated with the modulation of proteins involved in estrogen biosynthesis. Cancer Lett 2016; 370 (1): 145–52. doi: 10.1016/j.canlet.2015.10.015.
  87. Wang Q, Sun Z, Du L, et al. Melatonin Sensitizes Human Colorectal Cancer Cells to γ-ray Ionizing Radiation In Vitro and In Vivo. Int J Mol Sci 2018; 19 (12): 3974. doi: 10.3390/ijms19123974.
  88. Alonso-González C, González A, Martínez-Campa C, et al. Melatonin sensitizes human breast cancer cells to ionizing radiation by downregulating proteins involved in double-strand DNA break repair. J Pineal Res 2015; 58 (2): 189–97. doi: 10.1111/jpi.12205.
  89. González-González A, García Nieto E, González A, et al. Melatonin Modulation of Radiation and Chemotherapeutics-induced Changes on Differentiation of Breast Fibroblasts. Int J Mol Sci 2019; 20 (16): 3935. doi: 10.3390/ijms20163935.
  90. Beckta JM, Ahmad SF, Yang H, Valerie K. Revisiting p53 for cancer-specific chemo- and radiotherapy: ten years after. Cell Cycle 2014; 13 (5): 710–3. doi: 10.4161/cc.28108.
  91. Zhu H, Chen Y, Bai LC, et al. Different effects of melatonin on X-Rays-irradiated cancer cells in a dose-dependent manner. Dose Response 2019; 17 (3): 1559325819877271. doi: 10.1177/1559325819877271.
  92. Fernandez-Gil BI, Guerra-Librero A, Shen YQ, et al. Melatonin enhances cisplatin and radiation cytotoxicity in head and neck squamous cell carcinoma by stimulating mitochondrial ROS generation, apoptosis, and autophagy. Oxid Med Cell Longev 2019; 2019: 7187128. doi: 10.1155/2019/7187128.
  93. Mao L, Dauchy RT, Blask DE, et al. Melatonin suppression of aerobic glycolysis (Warburg effect), survival signalling and metastasis in human leiomyosarcoma. J Pineal Res 2016; 60 (2): 167–77. doi: 10.1111/jpi.12298.
  94. Sanchez-Sanchez AM, Antolin I, Puente-Moncada N, et al. Melatonin cytotoxicity is associated to Warburg effect inhibition in Ewing sarcoma cells. PLoS One 2015; 10 (8): e0135420. doi: 10.1371/journal.pone.0135420.
  95. Dauchy RT, Hoffman AE, Wren-Dail MA, et al. Daytime blue light enhances the nighttime circadian melatonin inhibition of human prostate cancer growth. Comp Med 2015; 65 (6): 473–85. PMID: 26678364.
  96. Gatz SA, Wiesmüller L. p53 in recombination and repair. Cell Death Differ 2006; 13 (6): 1003–16. doi: 10.1038/sj.cdd.4401903.
  97. Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 2003; 22 (37): 5792–812. doi: 10.1038/sj.onc.1206679.
  98. Ritter V, Krautter F, Klein D, et al. Bcl-2/Bcl-xL inhibitor ABT-263 overcomes hypoxia-driven radioresistence and improves radiotherapy. Cell Death Dis. 2021 Jul 13;12(7):694. doi: 10.1038/s41419-021-03971-7. Erratum in: Cell Death Dis. 2022 Apr 19;13(4):367. PMID: 34257274.
  99. Lafontaine J, Cardin GB, Malaquin N, et al. Senolytic targeting of Bcl-2 anti-apoptotic family increases cell death in irradiated sarcoma cells. Cancers (Basel) 2021; 13 (3): 386. doi: 10.3390/cancers13030386.
  100. Ji G, Zhou W, Li X, et al. Melatonin inhibits proliferation and viability and promotes apoptosis in colorectal cancer cells via upregulation of the microRNA-34a/449a cluster. Mol Med Rep 2021; 23 (3): 187. doi: 10.3892/mmr.2021.11826.
  101. Akbarzadeh M, Nouri M, Banekohal MV, et al. Effects of combination of melatonin and laser irradiation on ovarian cancer cells and endothelial lineage viability. Lasers Med Sci 2016; 31 (8): 1565–72. doi: 10.1007/s10103-016-2016-6.
  102. Zou ZW, Liu T, Li Y, et al. Melatonin suppresses thyroid cancer growth and overcomes radioresistance via inhibition of p65 phosphorylation and induction of ROS. Redox Biol 2018; 16: 226–36. doi: 10.1016/j.redox.2018.02.025.
  103. Zheng J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncol Lett 2012; 4 (6): 1151–7. doi: 10.3892/ol.2012.928.
  104. Yu L, Chen X, Sun X, et al. The glycolytic switch in tumors: how many players are involved? J Cancer 2017; 8 (17): 3430–40. https ://
  105. Robinson GL, Dinsdale D, MacFarlane M, Cain K. Switching from aerobic glycolysis to oxidative phosphorylation modulates Oncogene 2012; 31: 4996. https ://
  106. Cao K, Li J, Chen J, et al. micro-RNA-33a-5p increases radiosensitivity by inhibiting glycolysis in melanoma. Oncotarget 2017; 8 (48): 83660–72. /oncot arget.19014/
  107. Escames G, Guerra-Librero A, Shen Y, et al. PO-090: Oncostatic effect of melatonin in head and neck cancer: role of mitochondrial function. Radiother Oncol 2017; 122: 43–4. https :// -4.
  108. Rodriguez C, Martín V, Herrera F, et al. Mechanisms involved in the pro-apoptotic effect of melatonin in cancer cells. Int J Mol Sci 2013; 14 (4): 6597–613. doi: 10.3390/ijms14046597.
  109. Lee JH, Yoon YM, Han YS, et al. Melatonin Promotes Apoptosis of Oxaliplatin-resistant Colorectal Cancer Cells Through Inhibition of Cellular Prion Protein. Anticancer Res 2018; 38 (4): 1993–2000. doi: 10.21873/anticanres.12437.
  110. Sakatani A, Sonohara F, Goel A. Melatonin-mediated downregulation of thymidylate synthase as a novel mechanism for overcoming 5-fluorouracil associated chemoresistance in colorectal cancer cells. Carcinogenesis 2019; 40 (3): 422–31. doi: 10.1093/carcin/bgy186.
  111. Liu Z, Sang X, Wang M, et al. Melatonin potentiates the cytotoxic effect of Neratinib in HER2+ breast cancer through promoting endocytosis and lysosomal degradation of HER2. Oncogene 2021; 40 (44): 6273–83. doi: 10.1038/s41388-021-02015-w.
  112. Najafi M, Salehi E, Farhood B, et al. Adjuvant chemotherapy with melatonin for targeting human cancers: A review. J Cell Physiol 2019; 234 (3): 2356–72. doi: 10.1002/jcp.27259.
  113. Zhang M, Zhang M, Li R, et al. Melatonin sensitizes esophageal cancer cells to 5‑fluorouracil via promotion of apoptosis by regulating EZH2 expression. Oncol Rep 2021; 45 (4): 22. doi: 10.3892/or.2021.7973.
  114. Zhao Y, Wang C, Goel A. A combined treatment with melatonin and andrographis promotes autophagy and anticancer activity in colorectal cancer. Carcinogenesis 2022; 43 (3): 217–30. doi: 10.1093/carcin/bgac008.
  115. Tran QH, Hoang DH, Song M, et al. Melatonin and doxorubicin synergistically enhance apoptosis via autophagy-dependent reduction of AMPKα1 transcription in human breast cancer cells. Exp Mol Med 2021; 53 (9): 1413–22. doi: 10.1038/s12276-021-00675-y.
  116. Menéndez-Menéndez J, Hermida-Prado F, Granda-Díaz R, et al. Deciphering the Molecular Basis of Melatonin Protective Effects on Breast Cells Treated with Doxorubicin: TWIST1 a Transcription Factor Involved in EMT and Metastasis, a Novel Target of Melatonin. Cancers (Basel) 2019; 11 (7): 1011. doi: 10.3390/cancers11071011.
  117. Jadid MFS, Aghaei E, Taheri E, et al. Melatonin increases the anticancer potential of doxorubicin in Caco-2 colorectal cancer cells. Environ Toxicol 2021; 36 (6): 1061–9. doi: 10.1002/tox.23105.
  118. Gao Y, Xiao X, Zhang C, et al. Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling pathways. J Pineal Res 2017; 62 (2): e12380. doi:10.1111/jpi.12380.
  119. Hao J, Fan W, Li Y, et al. Melatonin synergizes BRAF-targeting agent vemurafenib in melanoma treatment by inhibiting iNOS/ hTERT signaling and cancer-stem cell traits. J Exp Clin Cancer Res 2019; 38 (1): 48. doi:10.1186/s13046-019-1036-z.
  120. Mi L, Kuang H. Melatonin regulates cisplatin resistance and glucose metabolism through Hippo signaling in hepatocellular carcinoma cells. Cancer Manag Res 2020; 12: 1863–74. doi:10.2147/cmar.S230466170.
  121. Pariente R, Bejarano I, Espino J, et al. Participation of MT3 melatonin receptors in the synergistic effect of melatonin on cytotoxic and apoptotic actions evoked by chemotherapeutics. Cancer Chemother Pharmacol 2017; 80 (5): 985–98. doi:10.1007/s00280-017-3441-3180.
  122. Pariente R, Pariente JA, Rodríguez AB, Espino J. Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation. J Pineal Res 2016; 60 (1): 55–64. doi:10.1111/ jpi.12288179.
  123. Chen L, Liu L, Li Y, Gao J. Melatonin increases human cervical cancer HeLa cells apoptosis induced by cisplatin via inhibition of JNK/Parkin/mitophagy axis. In Vitro Cell Dev Biol Anim 2018; 54 (1): 1–10. doi:10.1007/s11626-017-0200-z183.
  124. Chuffa LG, Fioruci-Fontanelli BA, Mendes LO, et al. Melatonin attenuates the TLR4-mediated inflammatory response through MyD88- and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer. BMC Cancer 2015; 15: 34. doi:10.1186/ s12885-015-1032-4191.
  125. Kim J-H, Jeong S-J, Kim B, et al. Melatonin synergistically enhances cisplatin-induced apoptosis via the dephosphorylation of ERK/p90 ribosomal S6 kinase/heat shock protein 27 in SK-OV-3 cells. J Pineal Res 2012; 52 (2): 244–52. doi:10.1111/j.1600-079X.2011.00935.x1.
  126. Lissoni P, Chilelli M, Villa S, et al. Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial. J Pineal Res 2003; 35 (1): 12–5. doi:10.1034/j.1600-079x.2003.00032.x33.
  127. Anisimov VN, Alimova IN, Baturin DA, et al. The effect of melatonin treatment regimen on mammary adenocarcinoma development in HER-2/neu transgenic mice. Int J Cancer 2003; 103 (3): 300–5. doi:10.1002/ijc.10827.
  128. Lissoni P. Biochemotherapy with standard chemotherapies plus the pineal hormone melatonin in the treatment of advanced solid neoplasms. Pathol Biol 2007; 55 (3–4): 201–4. doi:10.1016/j. patbio.2006.12.02535.
  129. Song N, Kim AJ, Kim HJ, et al. Melatonin suppresses doxorubicin-induced premature senescence of A549 lung cancer cells by ameliorating mitochondrial dysfunction. J Pineal Res 2012; 53 (4): 335–43. doi:10.1111/j.1600-079X.2012.01003.x37.
  130. Zhou Q, Gui S, Zhou Q, Wang Y. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway. PLoS One 2014; 9 (7): e101132. doi:10.1371/journal.pone.010113238.
  131. Plaimee P, Weerapreeyakul N, Barusrux S, Johns NP. Melatonin potentiates cisplatin-induced apoptosis and cell cycle arrest in human lung adenocarcinoma cells. Cell Prolif 2015; 48 (1): 67–77. doi:10.1111/cpr.1215839.
  132. Chao CC, Chen PC, Chiou PC, et al. Melatonin suppresses lung cancer metastasis by inhibition of epithelial-mesenchymal transition through targeting to Twist. Clin Sci 2019; 133 (5): 709–22. doi:10.1042/cs2018094540.
  133. Jablonska K, Nowinska K, Piotrowska A, et al. Prognostic impact of melatonin receptors MT1 and MT2 in non-small cell lung cancer (NSCLC). Cancers 2019; 11 (7): 1001. doi:10.3390/ cancers1107100141.
  134. Ma Z, Liu D, Di S, et al. Histone deacetylase 9 downregulation decreases tumor growth and promotes apoptosis in non-small cell lung cancer after melatonin treatment. J Pineal Res 2019; 67 (2): e12587. doi:10.1111/jpi.12587.
  135. Kahkesh MH, Salehi Z, Najafi M, et al. The inhibitory effect of melatonin on the proliferation of irradiated A549 cell line. J Cancer Res Ther 2020; 16 (6): 1500–1505. doi:10.4103/jcrt.JCRT_682_19.
  136. Jung JH, Shin EA, Kim JH, et al. NEDD9 inhibition by miR-25- 5p activation is critically involved in co-treatment of melatonin- and pterostilbene-induced apoptosis in colorectal cancer cells. Cancers 2019; 11 (11): 1684. doi:10.3390/cancers11111684134,
  137. Hosseini F, Shanehbandi D, Soleimanpour J, et al. Melatonin Increases the Sensitivity of Osteosarcoma Cells to Chemotherapy Drug Cisplatin. Drug Res (Stuttg) 2022; 72 (6): 312–8. doi: 10.1055/a-1830-8716.
  138. Allahverdi Khani M, Fardad S, Zandi Esfahani S, Motaghinejad M. Melatonin in Cancer Research: Exploring Therapeutic Potential in Counteracting Cancer. Canon Journal of Medicine 2023; 4 (3), 91–6. doi:10.30477/CJM.2023.430321.1070.
  139. Leach JK, Van Tuyle G, Lin PS, et al. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 2001; 61 (10): 3894–901. PMID: 11358802.
  140. Persson HL, Kurz T, Eaton JW, Brunk UT. Radiation-induced cell death: importance of lysosomal destabilization. Biochem J 2005; 389 (Pt 3): 877–84. doi: 10.1042/BJ20050271.
  141. Reiter RJ, Rosales-Corral SA, Manchester LC, Tan DX. Peripheral reproductive organ health and melatonin: ready for prime time. Int J Mol Sci 2013;14 (4): 7231–72. doi: 10.3390/ijms14047231.
  142. Reiter R, Tang L, Garcia JJ, Muñoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci 1997; 60 (25): 2255–71. doi: 10.1016/s0024-3205(97)00030-1.
  143. Acuna-Castroviejo D, Noguiera-Navarro MT, Reiter RJ, Escames G. Melatonin actions in the heart: more than a hormone. Melaton Res 2018; 1: 21–6. doi: 10.32794/mr11250002.
  144. Pozo D, Delgado M, Fernandez-Santos JM, et al. Expression of the Mel1a-melatonin receptor mRNA in T and B subsets of lymphocytes from rat thymus and spleen. FASEB J 1997; 11 (6): 466–73. doi: 10.1096/fasebj.11.6.9194527.
  145. García-Pergañeda A, Guerrero JM, Rafii-El-Idrissi M, et al. Characterization of membrane melatonin receptor in mouse peritoneal macrophages: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G protein. J Neuroimmunol 1999; 95 (1–2): 85–94. doi: 10.1016/s0165-5728(98)00268-9.
  146. García-Mauriño S, Pozo D, Calvo JR, Guerrero JM. Correlation between nuclear melatonin receptor expression and enhanced cytokine production in human lymphocytic and monocytic cell lines. J Pineal Res 2000; 29 (3): 129–37. doi: 10.1034/j.1600-079x.2000.290301.x.
  147. Najafi M, Shirazi A, Motevaseli E, et al. The melatonin immunomodulatory actions in radiotherapy. Biophys Rev 2017; 9 (2): 139–48. doi: 10.1007/s12551-017-0256-8.
  148. Farhood B, Goradel NH, Mortezaee K, et al. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization.Clin Transl Oncol 2019; 21 (3): 268–79. doi: 10.1007/s12094-018-1934-0.
  149. Raghavendra V, Singh V, Kulkarni SK, Agrewala JN. Melatonin enhances Th2 cell mediated immune responses: lack of sensitivity to reversal by naltrexone or benzodiazepine receptor antagonists. Mol Cell Biochem 2001; 221 (1–2): 57–62. doi: 10.1023/a:1010968611716.
  150. Wu CC, Lu KC, Lin GJ, et al. Melatonin enhances endogenous heme oxygenase-1 and represses immune responses to ameliorate experimental murine membranous nephropathy. J Pineal Res 2012; 52 (4): 460–9. doi: 10.1111/j.1600-079X.2011.00960.x.
  151. Jang SS, Kim HG, Lee JS, et al. Melatonin reduces X-ray radiation-induced lung injury in mice by modulating oxidative stress and cytokine expression. Int J Radiat Biol 2013; 89 (2): 97–105. doi: 10.3109/09553002.2013.734943.
  152. Zhou D, Yu T, Chen G, et al. Effects of NF-kappaB1 (p50) targeted gene disruption on ionizing radiation-induced NF-kappaB activation and TNFalpha, IL-1alpha, IL-1beta and IL-6 mRNA expression in vivo. Int J Radiat Biol 2001; 77 (7): 763–72. doi: 10.1080/09553000110050047.
  153. Aliasgharzadeh A, Farhood B, Amini P, et al. Melatonin Attenuates Upregulation of Duox1 and Duox2 and Protects against Lung Injury following Chest Irradiation in Rats. Cell J 2019; 21 (3): 236–42. doi: 10.22074/cellj.2019.6207.
  154. Farhood B, Goradel NH, Mortezaee K, et al. Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment. J Cell Physiol 2019; 234 (5): 5613–27. doi: 10.1002/jcp.27391.
  155. Talib WH. Melatonin and Cancer Hallmarks. 2018; 23 (3): 518. doi: 10.3390/molecules23030518.
  156. Cakmak Karaer I, Simsek G, Yildiz A, et al. Melatonin’s protective effect on the salivary gland against ionized radiation damage in rats. J Oral Pathol Med 2016; 45 (6): 444–9. doi: 10.1111/jop.12386.
  157. Canyilmaz E, Uslu GH, Bahat Z, et al. Comparison of the effects of melatonin and genistein on radiation-induced nephrotoxicity: results of an experimental study. Biomed Rep 2016; 4 (1): 45–50. doi: 10.3892/br.2015.547.
  158. Gürses I, Özeren M, Serin M, et al. Histopathological evaluation of melatonin as a protective agent in heart injury induced by radiation in a rat model. Pathol Res Pract 2014; 210 (12): 863–71. doi: 10.1016/j.prp.2014.08.006.
  159. Haddadi G, Shirazi A, Sepehrizadeh Z, et al. Radioprotective effect of melatonin on the cervical spinal cord in irradiated rats. Cell J 2013; 14 (4): 246–53. PMID: 23577303.
  160. Karslioglu I, Ertekin MV, Taysi S, et al. Radioprotective effects of melatonin on radiation-induced cataract. J Radiat Res 2005; 46 (2): 277–82. doi: 10.1269/jrr.46.277.
  161. Tahamtan R, Shabestani Monfared A, Tahamtani Y, et al. Radioprotective effect of melatonin on radiation-induced lung injury and lipid peroxidation in rats Cell J. 2015; 17 (1): 111–20. doi: 10.22074/cellj.2015.517.
  162. Sener G, Jahovic N, Tosun O, et al. Melatonin ameliorates ionizing radiation-induced oxidative organ damage in rats. Life Sci. 2003; 74 (5): 563–72. doi: 10.1016/j.lfs.2003.05.011.
  163. Shabeeb D, Najafi M, Musa AE, et al. Biochemical and Histopathological Evaluation of the Radioprotective Effects of Melatonin Against Gamma Ray-Induced Skin Damage. Curr Radiopharm 2019; 12 (1): 72–81. doi: 10.2174/1874471012666181120163250.
  164. Taysi S, Koc M, Büyükokuroğlu ME, et al. Melatonin reduces lipid peroxidation and nitric oxide during irradiation-induced oxidative injury in the rat liver. J Pineal Res 2003; 34 (3): 173–7. doi: 10.1034/j.1600-079x.2003.00024.x.
  165. El-Missiry MA, Fayed TA, El-Sawy MR, El-Sayed AA. Ameliorative effect of melatonin against gamma-irradiation-induced oxidative stress and tissue injury. Ecotoxicol Environ Saf 2007; 66 (2): 278–86. doi: 10.1016/j.ecoenv.2006.03.008.
  166. Shirazi A, Mihandoost E, Ghobadi G, et al. Evaluation of radio-protective effect of melatonin on whole body irradiation induced liver tissue damage. Cell J 2013; 14 (4): 292–7. PMID: 23577309.
  167. Shirazi A, Haddadi GH, Asadi-Amoli F, et al. Radioprotective effect of melatonin in reducing oxidative stress in rat lenses. Cell J 2011; 13 (2): 79–82. PMID: 23508093.
  168. Sharma S, Haldar C. Melatonin prevents X-ray irradiation induced oxidative damagein peripheral blood and spleen of the seasonally breeding rodent, Funambulus pennanti during reproductively active phase. Int J Radiat Biol 2006; 82 (6): 411–9. doi: 10.1080/09553000600774105.
  169. Sharma S, Haldar C, Chaube SK. Effect of exogenous melatonin on X-ray induced cellular toxicity in lymphatic tissue of Indian tropical male squirrel, Funambulus pennanti. Int J Radiat Biol 2008; 84 (5): 363–74. doi: 10.1080/09553000802029894.
  170. Erol FS, Topsakal C, Ozveren MF, et al. Protective effects of melatonin and vitamin E in brain damage due to gamma radiation: an experimental study. Neurosurg Rev 2004; 27 (1): 65–9. doi: 10.1007/s10143-003-0291-8.
  171. Jang SS, Kim WD, Park WY. Melatonin exerts differential actions on X-ray radiation-induced apoptosis in normal mice splenocytes and Jurkat leukemia cells. J Pineal Res 2009; 47 (2): 147–55. doi: 10.1111/j.1600-079X.2009.00694.x.
  172. Mohseni M, Mihandoost E, Shirazi A, et al. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis. Mutat Res 2012; 738–739: 19–27. doi: 10.1016/j.mrfmmm.2012.08.006.
  173. Alonso-González C, Menéndez-Menéndez J, González-González A, et al. Melatonin enhances the apoptotic effects and modulates the changes in gene expression induced by docetaxel in MCF‑7 human breast cancer cells. Int J Oncol 2018; 52 (2): 560–70. doi: 10.3892/ijo.2017.4213.
  174. Cagnoli CM, Atabay C, Kharlamova E, Manev H. Melatonin protects neurons from singlet oxygen-induced apoptosis. J Pineal Res 1995; 18 (4): 222–6. doi: 10.1111/j.1600-079x.1995.tb00163.x.
  175. Siu AW, Reiter RJ, To CH. Pineal indoleamines and vitamin E reduce nitric oxide-induced lipid peroxidation in rat retinal homogenates. J Pineal Res 1999; 27 (2): 122–8. doi: 10.1111/j.1600-079x.1999.tb00606.x.
  176. Maestroni GJ, Covacci V, Conti A. Hematopoietic rescue via T-cell-dependent, endogenous granulocyte-macrophage colony-stimulating factor induced by the pineal neurohormone melatonin in tumor-bearing mice. Cancer Res 1994; 54 (9): 2429–32.
  177. Sainz RM, Mayo JC, Uría H, et al. The pineal neurohormone melatonin prevents in vivo and in vitro apoptosis in thymocytes. J Pineal Res 1995; 19 (4):1 78–88. doi: 10.1111/j.1600-079x.1995.tb00187.x.
  178. Ruifrok AC, Weil MM, Thames HD, Mason KA. Diurnal variations in the expression of radiation-induced apoptosis. Radiat Res 1998; 149 (4): 360–5. PMID: 9525500.
  179. Kopjar N, Miocić S, Ramić S, et al. Assessment of the radioprotective effects of amifostine and melatonin on human lymphocytes irradiated with gamma-rays in vitro. Arh Hig Rada Toksikol 2006; 57 (2): 155–63. PMID: 16832970.
  180. Rostami A, Moosavi SA, Dianat Moghadam H, Bolookat ER. Micronuclei Assessment of The Radioprotective Effects of Melatonin and Vitamin C in Human Lymphocytes. Cell J 2016; 18 (1): 46–51. doi: 10.22074/cellj.2016.3986.
  181. Eskandari A, Mahmoudzadeh A, Shirazi A, et al. Melatonin a promising candidate for DNA double-stranded breaks reduction in patients undergoing abdomen-pelvis computed tomography examinations. Anticancer Agents Med Chem 2020; 20 (7): 859–64. doi: 10.2174/1871521409666200324101701.
  182. Esmaely F, Mahmoudzadeh A, Cheki M, Shirazi A. The radioprotective effect of melatonin against radiation-induced DNA double-strand breaks in radiology. J Cancer Res Ther 2020; 16(Supplement): S59-S63. doi: 10.4103/jcrt.JCRT_370_18.
  183. Jafarpour SM, Shekarchi B, Bagheri H, Farhood B. The radioprotective effects of melatonin and nanoselenium on dna double-strand breaks in peripheral lymphocytes caused by I-131. Indian J Nucl Med 2021; 36 (2): 134–139. doi: 10.4103/ijnm.IJNM_179_20.
  184. Abdullaev SA, Glukhov SI, Gaziev AI. Radioprotective and radiomitigative effects of melatonin in tissues with different proliferative activity. Antioxidants (Basel) 2021; 10 (12): 1885. doi: 10.3390/antiox10121885.
  185. Badr FM, El Habit OH, Harraz MM. Radioprotective effect of melatonin assessed by measuring chromosomal damage in mitotic and meiotic cells. Mutat Res 1999; 444 (2): 367–72. doi: 10.1016/s1383-5718(99)00103-5.
  186. Vijayalaxmi, Reiter RJ, Meltz ML. Melatonin protects human blood lymphocytes from radiation-induced chromosome damage. Mutat Res 1995; 346 (1): 23– doi: 10.1016/0165-7992(95)90065-9.
  187. Vijayalaxmi, Reiter RJ, Sewerynek E, et al. Marked reduction of radiation-induced micronuclei in human blood lymphocytes pretreated with melatonin. Radiat Res 1995; 143 (1): 102– PMID: 7597136.
  188. Vijayalaxmi, Reiter RJ, Herman TS, Meltz ML. Melatonin and radioprotection from genetic damage: in vivo/in vitro studies with human volunteers. Mutat Res 1996; 371 (3–4): 221– doi: 10.1016/s0165-1218(96)90110-x.
  189. Vijayalaxmi, Meltz ML, Reiter RJ, et al. Melatonin and protection from whole-body irradiation: survival studies in mice. Mutat Res 1999; 425 (1): 21– doi: 10.1016/s0027-5107(98)00246-2. PMID: 10082913.
  190. Blickenstaff RT, Brandstadter SM, Reddy S, Witt R. Potential radioprotective agents. Homologs of melatonin. J Pharm Sci 1994; 83 (2): 216–8. doi: 10.1002/jps.2600830220.
  191. Shirazi, A.R.; Fardid, R.; Mihandoost, E. Protective effect of low dose melatonin on radiation-induced damage to rat liver. J Biomed Phys Eng 2012; 2: 66–70.
  192. Kaya H, Delibas N, Serteser M, et al. The effect of melatonin on lipid peroxidation during radiotherapy in female rats. Strahlenther Onkol 1999; 175 (6): 285–8. doi: 10.1007/BF02743581.
  193. Karbownik M, Reiter RJ. Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc Soc Exp Biol Med 2000; 225 (1): 9–22. doi: 10.1177/153537020022500102.
  194. Canyilmaz E, Uslu GH, Bahat Z, et al. Comparison of the effects of melatonin and genistein on radiation-induced nephrotoxicity: Results of an experimental study. Biomed Rep 2016; 4 (1): 45–50. doi: 10.3892/br.2015.547.
  195. Shabeeb D, Keshavarz M, Shirazi A, et al. Evaluation of the radioprotective effects of melatonin against ionizing radiation-induced muscle tissue injury. Curr Radiopharm 2019; 12 (3): 247–55. doi: 10.2174/1874471012666190219120329.
  196. Tokuyama-Toda R, Umeki H, Okubo M, et al. The preventive effect of melatonin on radiation-induced oral mucositis. Cells 2023; 12 (17): 2178. doi: 10.3390/cells12172178.
  197. Khan S, Adhikari JS, Rizvi MA, et al. Radioprotective potential of melatonin against ⁶⁰Co γ-ray-induced testicular injury in male C57BL/6 mice. J Biomed Sci 2015; 22 (1): doi: 10.1186/s12929-015-0156-9.


No comments » Add comment