Yu.V. Shvets1, 2, N.O. Bezdieniezhnykh1, O.O. Lykhova1, V.F. Chekhun1

1R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine,

2NSC “Institute of Biology and Medicine” of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

DOI: https://doi.org/10.15407/oncology.2023.04.237

Summary. The tumor microenvironment is a unique composition of cellular and soluble factors associated with the development of the tumor process. These factors include stromal and endothelial cells, cells of the immune system, components of the extracellular matrix, and cytokines. Recently, the microbiome, which is one of the key components for maintaining the homeostasis of any organs and tissues of the human body, was included as an element of the tumor microenvironment. Cellular elements of the microenvironment are interconnected and interdependent. Such influence is implemented with the involvement of soluble factor, among which the role of the “two-face Janus” is played by reactive oxygen species (ROS). The review provides data on the importance of ROS for the activity of immune system cells and the microbiome. Mechanisms of influence of the microbiome with the participation of ROS on the tumor process were considered.

Key words: microbiome, reactive oxygen species (ROS), cancer, tumor microenvironment (TME)



  1. Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends in Biochemical Sciences 2016; 41 (3): 211– doi: 10.1016/j.tibs.2015.12.001.
  2. Fu Y, Liu S, Yin S, et al. The reverse Warburg effect is likely to be an Achilles’ heel of cancer that can be exploited for cancer therapy. Oncotarget 2017; 8: 57813–25. doi: 10.18632/oncotarget.18175.
  3. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020; 30 (16): 921– doi: 10.1016/j.cub.2020.06.081.
  4. Kovacs T, Mikó E, Ujlaki G, et al. The microbiome as a component of the tumor microenvironment. Adv Exp Med Biol. 2020; 1225: 137–53. doi: 10.1007/978-3-030-35727-6_10.
  5. GonzalezSanchez P, DeNicola GM. The microbiome(s) and cancer: know thy neighbor(s). J Pathol. 202; 254(4): 332– doi: 10.1002/path.5661.
  6. Kundu P, Blacher E, Elinav E, et al. Our gut microbiome: the evolving inner self. Cell 2017; 171: 1481–93. doi: 10.1016/j.cell.2017.11.024.
  7. Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity 2017; 46: 562–76. doi: 10.1016/j.immuni.2017.04.008.
  8. Chekhun VF, Lukyanova NYu, Shvets YuV The influence of microbiota on the development of human tumor diseases. Oncology. 2020; 22 (1–2). doi: 32471/oncology.2663-7928.t-22-1-2020-g.8759 (in Ukrainian).
  9. Gopalakrishnan V, Helmink BA, Spencer CN, et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018; 33: 570–80. doi: 10.1016/j.ccell.2018.03.015.
  10. Shvets YuV, Lykhova OO, Chekhun VF. Human microbiota and breast cancer. Experimental Oncology. 2022; 44 (2): 95– doi: 10.32471/exp-oncology.2312-8852.vol-44-no-2.17855.
  11. Garrett W S. Cancer and the microbiota. Science 2015; 348: 80–6. doi: 10.1126/science.aaa4972.
  12. Burlaka AP, Sydorik EP. Radical forms of oxygen and nitric oxide in the tumor process. Kyiv: Scientific opinion, 2006. 228 p. (in Ukrainian).
  13. Aggarwal V, Tuli HS, Varol A, et al. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. 2019; 11: 735. doi: 10.3390/biom9110735.
  14. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Current Biology 2014; 24 (10): 453–62. doi: 10.1016/j.cub.2014.03.034.
  15. Holzerová E, Prokisch H. Mitochondria: Much ado about nothing? How dangerous is reactive oxygen species production? The International Journal of Biochemistry & Cell Biology 2015; 63: 16–20. doi: 1016/j.biocel.2015.01.021.
  16. Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res 2020; 13: 1057–73. doi: 10.2147/JIR.S275595.eCollection 2020.
  17. Wang Y, Qi H, Liu Y, et al. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021; 11 (10): 4839–57. doi: 7150/thno.56747.
  18. Cordani M, Butera G, Pacchiana R, et al. Mutant p53-Associated Molecular Mechanisms of ROS Regulation in Cancer Cells. Biomolecules. 2020; 10 (3): doi: 10.3390/biom10030361.
  19. Moloney JN, Cotter TG. ROS signalling in the biology of Seminars in Cell & Developmental Biology 2018; 80: 50–64. doi: 10.1016/j.semcdb.2017.05.023.
  20. Malla R, Surepalli N, Farran B, Malhotra SV, Nagaraju GP. Reactive oxygen species (ROS): critical roles in breast tumor microenvironment. Critical Reviews in Oncology/Hematology. 2021; 160, article 103285. doi: 10.1016/j.critrevonc.2021.103285.
  21. Liu D, Zhang R, Wu J, et al. Interleukin-17A promotes esophageal adenocarcinoma cell invasiveness through ROS-dependent, NF-κB-mediated MMP-2/9 activation. Oncology Reports 2017; 37 (3): 1779–85. org/10.3892/or.2017.5426.
  22. Ho BY, Wu YM, Chang KJ, Pan TM. Dimerumic acid inhibits SW620 cell invasion by attenuating H2O2-Mediated MMP-7 expression via JNK/C-Jun and ERK/C-Fos activation in an AP-1-dependent manner. International Journal of Biological Sciences 2011; 7 (6): 869–80. doi: 10.7150/ijbs.7.869.
  23. Jiang J, Wang K, Chen Y, et al.. Redox regulation in tumor cell epithelial-mesenchymal transition: molecular basis and therapeutic Signal Transduction and Targeted Therapy 2017; 2 (1): 17036. doi: 10.1038/sigtrans.2017.36.
  24. Kirtonia A, Sethi G, Garg M. The multifaceted role of reactive oxygen species in tumorigenesis. Cellular and Molecular Life Sciences 2020; 77 (22): 4459–83. doi: 10.1007/s00018-020-03536-5.
  25. Ryu D, Lee JH, Kwak MK. NRF2 level is negatively correlated with TGF-β1-induced lung cancer motility and migration via NOX4-ROS Archives of Pharmacal Research 2020; 43 (12): 1297–310. doi: 10.1007/s12272-020-01298-z.
  26. Saliem SS, Bede SY, Cooper PR, et al. Pathogenesis of periodontitis – A potential role for epithelial-mesenchymal Jpn Dent Sci Rev 2022; 58: 268–78. doi: 10.1016/j.jdsr.2022.09.001.
  27. Gupta I, Pedersen S, Vranic S, Al Moustafa A-E. Implications of Gut Microbiota in Epithelial–Mesenchymal Transition and Cancer Progression: A Concise Review. Cancers (Basel) 2022; 14 (12): 2964. doi: 10.3390/cancers14122964.
  28. Kovacs T, Miko E, Vida A, et al. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Scientific Reports 2019; 9 (1): 1300. doi.org/10.1038/s41598-018-37664-7.
  29. Vergara D, Simeone P, Damato M, et al. The Cancer Microbiota: EMT and Inflammation as Shared Molecular Mechanisms Associated with Plasticity and Progression. J Oncol 2019; 20: 1253727. doi: 10.1155/2019/1253727.
  30. Mikó E, Vida A, Kovács T, et al. Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochimica et Biophysica Acta (BBA)—Bioenergetics 2018; 1859 (9): 958–74. doi: 10.1016/j.bbabio.2018.04.002.
  31. Luu TH, Bard J-M, Carbonnelle D, et al. Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells. Cellular Oncology 2018; 41 (1): 13–24. doi: 10.1007/s13402-017-0353-5.
  32. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer.Nature Reviews Molecular Cell Biology. 2019; 20 (2): 69–84. doi: 10.1038/s41580-018-0080-4.
  33. Lu W, Kang Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Developmental Cell 2019; 49 (3): 361–74. doi: 10.1016/j.devcel.2019.04.010.
  34. Zadora PK, Chumduri C, Imami K, et al. Integrated phosphoproteome and transcriptome analysis reveals chlamydia-induced epithelial-to-mesenchymal transition in host cells. Cell Reports 2019; 26 (5): 1286–302. doi: 10.1016/j.celrep.2019.01.006.
  35. Dominguez C, David JM, Palena C. Epithelial-mesenchymal transition and inflammation at the site of the primary tumor. Seminars in Cancer Biology 2017; 47: 177–84. doi: 10.1016/j.semcancer.2017.08.002.
  36. Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018; 359 (6371): 91–7. doi: 10.1126/science.aan3706.
  37. Chen L, Gibbons DL, Goswami S, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nature Communications 2014; 5: 5241. doi: 10.1038/ncomms6241.
  38. Costa A, ScholerDahirel A, MechtaGrigoriou F. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Cancer Biol 2014; 25: 23–32. doi: 10.1016/j.semcancer.2013.12.007.
  39. Jain M, Rivera S, Monclus EA, et al. Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling. J Biol Chem 2013; 288: 770–7. doi: 10.1074/jbc.M112.431973.
  40. Kojima Y, Acar A, Eaton EN, et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 2010; 107: 20009–14. doi: 10.1073/pnas.1013805107.
  41. Liang W, He X, Bi J, et al. Role of reactive oxygen species in tumors based on the ‘seed and soil’ theory: A complex interaction (Review). Oncol Rep 2021; 46 (3): 208. doi: 3892/or.2021.8159.
  42. Sampson N, Brunner E, Weber A, et al. Inhibition of Nox4-dependent ROS signaling attenuates prostate fibroblast activation and abrogates stromal-mediated protumorigenic interactions. Int J Cancer 2018; 143: 383–95. doi: 1002/ijc.31316.
  43. Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 2014; 25: 47–60. doi: 10.1016/j.semcancer.2014.01.005.
  44. Zhang D, Wang Y, Shi Z, et al. Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Rep 2015; 10: 1335–48. doi: 10.1016/j.celrep.2015.02.006.
  45. Yang L, Li A, Wang Y, Zhang Y. Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduct Target Ther 2023; 8 (1): 35. org/10.1038/s41392-022-01304-4.
  46. Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type–specific intracellular bacteria. Science 2020; 368: 973– doi: 10.1126/science.aay9189.
  47. Butcher LD, den Hartog G, Ernst PB, Crowe SE. Oxidative Stress Resulting from Helicobacter pylori Infection Contributes to Gastric Carcinogenesis. Cell Mol Gastroenterol Hepatol 2017; 3: 316–22. doi: 1016/j.jcmgh.2017.02.002.
  48. Gobert AP, Wilson KT. Polyamine- and NADPH-dependent generation of ROSduring Helicobacterpylori infection: A blessing in disguise. Free Radic Biol Med. 2017; 105: 16– DOI: 10.1016/j.freeradbiomed.2016.09.024.
  49. Zhang X, Li C, Chen D, et al. pylori CagA activates the NLRP3 inflammasome to promote gastric cancercell migration and invasion. Inflamm Res 2022; 71 (1): 141–55. doi: 10.1007/s00011-021-01522-6.
  50. Lesiów MK, Komarnicka UK, StokowaSołtys K, et al. Relationship between copper(ii) complexes with FomA adhesin fragments of F. nucleatum and colorectal cancer. Coordination pattern and ability to promote ROS Dalton Trans 2018; 47 (15): 5445–58. doi.org/10.1039/C7DT04103A.
  51. Li F, Huang H, Xu J, et al. Fusobacterium nucleatum-triggered purine metabolic reprogramming drives tumorigenesis in head and neck carcinoma. Discov Oncol 2023; 14 (1): 120. doi: 10.1007/s12672-023-00727-x.
  52. Kong X, Zhang Y, Xiang L, et al. Fusobacterium nucleatum-triggered neutrophil extracellular traps facilitate colorectal carcinoma progression. J Exp Clin Cancer Res 2023; 42 (1): 236. org/10.1186/s13046-023-02817-8.
  53. Tintelnot J, Xu Y, Lesker TR, et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature 2023; 615 (7950): 168– doi: 10.1038/s41586-023-05728-y.
  54. SaintGeorgesChaumet Y, Edeas M. Microbiota–mitochondria inter-talk: consequence for microbiota–host interaction. Pathogens and Disease 2016; 74 (1). doi.org/10.1093/femspd/ftv096.
  55. Chooruk A, Piwat S, Teanpaisan R. Antioxidant activity of various oral Lactobacillus strains. J Appl Microbiol 2017; 123: 271–9. doi: 10.1111/jam.13482.
  56. Shandilya S, Kumar S, Kumar JN, et al. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J Adv Res 2022; 38: 223–44. doi: 10.1016/j.jare.2021.09.005.
  57. Jackson DN, Theiss AL. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes 2020; 11: 285–304. doi: 10.1080/19490976.2019.1592421.
  58. Kunst C, Schmid S, Michalski M, et al. The Influence of Gut Microbiota on Oxidative Stress and the Immune System. Biomedicines 2023; 11: 1388. doi: 10.3390/biomedicines11051388.
  59. Wang Y, Wu Y, Wang Y, et al. Antioxidant Properties of Probiotic Bacteria. Nutrients 2017; 9: 521. doi: 3390/nu9050521.

No comments » Add comment