ЗВ’ЯЗОК ЕКСПРЕСІЇ МАРКЕРІВ РЕМОДЕЛЮВАННЯ КІСТКОВОЇ ТКАНИНИ ІЗ МАРКЕРАМИ МОЛЕКУЛЯРНОГО ПРОФІЛЮ НОВОУТВОРЕНЬ МОЛОЧНОЇ ЗАЛОЗИ, ЩО ЗАДІЯНІ У МЕХАНІЗМАХ ІНІЦІАЦІЇ ТА РЕАЛІЗАЦІЇ МЕТАСТАТИЧНОГО ПРОЦЕСУ В КІСТКИ


Л.А. Налєскіна, Н.Ю. Лукянова, Л.М. Кунська, В. Чехун
Інститут   експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України, Київ, Україна

DOI: https://doi.org/10.15407/oncology.2023.02.081

 

Аналіз даних літератури засвідчив, що експресія білків ремоделювання кісткової тканини (остеопонтин, остеонектин, BMP-7) і їх вплив на метастазування, зокрема у кісткову тканину, здійснюються завдяки безпосередній або опосередкованій участі маркерів молекулярного профілю, а саме рецепторів стероїдних гормонів (естрогенів, прогестерону), Кі-67, молекул адгезії Е-кадгерину, N-кадгерину та CD-44. При виникненні злоякісного новоутворення відсутність або експресія кожного з цих маркерів молекулярного профілю віддзеркалює спрямованість пухлинного процесу, а отже його злоякісність, і тим самим визначає ступінь причетності до метастатичного розповсюдження пухлинних клітин у кістки. Тому, найбільш об’єктивне вирішення питання щодо визначення прогнозу захворювання та обґрунтованого лікування хворих на РМЗ може бути прийняте лише при комплексному застосуванні як сучасних біомаркерів ремоделювання кісткової тканини, так і панелі маркерів молекулярного профілю новоутворень.

 

Посилання

  1. Ahmad E, Ali A, Hamdard J, Kumar Molecular markers in cancer. Clin Chim Acta 2022; 532 (3): 95–114. doi: 10. 1016/j.cca.2022.05.029.
  2. D’Oronzo S, Brown J, Coleman The role of biomarkers in the management of bone-homing malignancies. J Bone Oncol 2017; 9: 1–9. doi: 10.1016/j.jbo.2017.09.001.
  3. Alarcón-Zendejas AP, Scavuzzo A, Jiménez-Ríos MA, et al. The promising role of new molecular biomarkers in prostate cancer: from coding and non-coding genes to artificial intel- ligence Prostate Cancer and Prostatic Diseases 2022; 25: 431–43.
  4. Khongsti K, Das Osteopontin and breast cancer metastasis: Possible role of genistein on the regulation of osteopon- tin. Phytomedicine Plus 2021; 1 (4): 00138. https://doi. org/10.1016/j.phyplu.2021.100138.
  5. Hao C, Wang Z, Gu Y, et al. Prognostic value of osteopon- tin splice variant-c expression in breast cancers: A meta- Biomed Res Int 2016; 2016: 7310694. doi: 10.1155/ 2016/7310694.
  6. Lopergolo A, Zaffaroni Biomolecular markers of outcome prediction in prostate cancer. Cancer 2009; 115 (13 Suppl): 3058–67. doi: 10.1002/cncr.24346.
  7. Mohanty SS, Sahoo SR, Padhy Role of hormone recep- tors and HER2 as prospective molecular markers for breast cancer: An update. Genes Dis 2022; 9 (3): 648–58. doi: 10.1016/j.gendis.2020.12.005.
  8. Quinn DI, Henshall SM, Sutherland Molecular markers of prostate cancer outcome. Eur J Cancer 2005; 41 (6): 858–87. doi:  10.1016/j.ejca.2004.12.035.
  9. Wei R, Wong JPC, Kwok Osteopontin — a promising biomarker for cancer therapy. J Cancer 2017; 8 (12): 2173– 83. doi: 10.7150/jca.20480.
  10. Kuo MC, Kothari AN, Kuo PC, Mi Cancer stemness in bone marrow micrometastases of human breast cancer. Sur- gery 2018; 163 (2):  330–5. doi: 10.1016/j.surg.2017.07. 027.
  11. Kim YW, Park YK, Lee J., et al. Expression of osteopontin and osteonectin in breast Journal of Korean Medical Science 1998; 13 (6): 652–7. doi: https://doi.org/10.3346/ jkms.1998.13.6.652
  12. Zhao H, Chen Q, Alam A, et al. The role of osteopontin in the progression of solid organ Cell Death Dis 2018; 9 (3): 356. doi: 10.1038/s41419-018-0391-6.
  13. Khogaly RSE, Abdrabo AA, Hussein WA, et al. Association between osteopontin and hormone receptor  status among breast cancer patients. PJMHS 2022; 16 (12): 447. doi: https://doi.org/10.53350/pjmhs20221612447.
  14. Rucci N, Teti A. Osteomimicry: How the seed grows in the soil. Calcif Tissue Int 2018; 102: 131–40. doi: 10.1007/ s00223-017-0365-1.
  15. Pang X, Gong K, Zhang X, et al. Osteopontin as a multifacet- ed driver of bone metastasis and drug Pharmacol Res 2019; 144: 235–44. doi: 10.1016/j.phrs.2019.04.030.
  16. Shevde L, Das S, Clark D, Samant Osteopontin: An ef- fector and an effect of tumor metastasis. Curr Mol Med 2010; 10: 71–81. doi: 10.2174/156652410791065381.
  17. Yu Q, Stamenkovic Localization of matrix metalloprotei- nase 9 to the cell surface provides a mechanism for CD44- mediated tumor invasion. Genes Dev 1999; 13: 35–48.
  18. Ponzetti M, Rucci Switching homes: how cancer moves to bone. Int J Mol Sci 2020; 21 (11): 4124. doi: 10.3390/ ij  1114124.
  19. Wood SL, Brown Personal medicine and bone me- tastases: biomarkers, micro-RNAs and bone metastases. Cancers (Basel) 2020; 12 (8): 2109. doi: 10.3390/cancers 12082109.
  20. Xu H, Niu M, Yuan X, et al. CD44 as a tumor biomarker and therapeutic Exp Hematol Oncol 2020; 9 (1): 36. doi: 10.1186/s40164-020-00192-0.
  21. Mesrati MH, Syafruddin SE, Mohtar MA, Syahir A. CD44: a multifunctional mediator of cancer progress Biomo- lecules 2021; 11 (12): 1850; doi: 10.3390/biom11121850.
  22. Wang Z, Zhao K, Hackert T, Zöller CD44/CD44v6 a reliable companion in cancer-initiating cell  maintenance and tumor progression. Front Cell Dev Biol 2018; 6: 97. doi:  10.3389/fcell.2018.00097.
  23. Kariya Y. Osteopontin in cancer: mechanisms and therapeu- tic t Int J Transl Med 2022; 2: 419–47. https://doi. org/10.3390/ij
  24. Bhadresha KP, Patel M, Jain NK, Rawal A predic- tive biomarker panel for bone metastases: liquid biopsy approach. J Bone Oncol 2021; 29: 100374. doi: 10.1016/j. jbo.2021.100374.
  25. Elbaiomy MA, ElGhonemy MS, Elhelaly R, Elzehery R. Osteopontin level and promoter polymorphism is associated with aggressiveness in breast Ann Oncol 2018; 29 (9): ix15. https://doi.org/10.1093/annonc/mdy428.004.
  26. Ruan Y, Chen L, Xie D, et This article is part of the re- search topic mechanisms of cell adhesion molecules in endocrine-related cancers: a concise outlook. Front Endo- crinol (Lausanne) 2022; 13: 865436. doi: 10.3389/fendo. 2022.865436.
  27. Murray N Minimal residual disease in prostate cancer patients after primary treatment: theoretical considerations, evidence and possible use in clinical management. Biol Res 2018; 51 (1): 32. doi: 10.1186/s40659-018-0180-9.
  28. Kowalski PJ, Rubin MA, Kleer E-cadherin expression in primary carcinomas of breast and its distant metasta- sis. Breast Cancer Res 2003; 5: R217–22. doi: 10.1186/ bcr651.
  29. Wells A, Yates C, Shepard E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metastasis 2008; 25 (6): 621–8. doi: 10.1007/s10585-008- 9167-1.
  30. Graff JR, Gabrielson E, Fujii H, et al. Methylation patterns of the E-cadherin 5′CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progress J Biol Chem 2000; 275 (4): 2727–32. doi: 10.1074/jbc.275.4.2727.
  31. Hajra KM, Chen DY, Fearon The SLUG zinc finger protein represses E-cadherin in breast cancer. Cancer Res 2002; 62 (6): 1613–8.
  32. Nam JS, Ino Y, Kanai Y, et al. 5-aza-2′-deoxycytidine restores the E-cadherin system in E-cadherin silenced cancer cells and reduces cancer metast Clin Exp Metastasis 2004; 21 (1): 49–56. doi: 10.1023/b:clin.0000017180.19881.c1.
  33. Shurin Osteopontin controls immunosuppression in the tumor microenvironment. J Clin Invest 2018; 128 (12): 5209–12. doi: 10.1172/JCI124918.
  34. Walaszek K, Lower EE, Ziolkowski P, Weber GF. Breast can- cer risk in premalignant lesions: osteopontin splice variants indicate progno Br J Cancer 2018; 119 (10): 1259–66. doi: 10.1038/s41416-018-0228-1.
  35. Santisteban M, Reynolds C, Barr Fritcher EG, et al. Ki67: a time-varying biomarker of risk of breast cancer in atypical hyperplas Breast Cancer Res Treat 2010; 121 (2): 431–37. doi: 10.1007/s10549-009-0534-7.
  36. Weber GF. Crossroads: the role of biomarkers in the manage- ment of lumps in the breas Oncotarget 2023; 14: 358–62. doi: 10.18632/oncotarget.28402.
  37. Shi S, Ma H-Y, Han X-Y, et al. Prognostic significance of SPARC expression in breast cancer: a meta-analysis and bioinformatics Biomed Res Int 2022; 2022: doi: 10.1155/2022/8600419.
  38. Guo W, Zhang M, Chen Y, Guo The clinical signifi ance of secreted protein acidic and rich in cysteine expression in breast cancer tissue and its association with prognosis. J Cancer Res Ther 2017; 13 (5): 833–6. doi: 10.4103/jcrt. JCRT_424_17.
  39. Kim NI, Kim GE, Lee JS, Park In phyllodes tumors of the breast expression of SPARC (osteonectin/BM40) mRNA by in situ hybridization correlates with protein ex- pression by immunohistochemistry and is associated with tumor progression.Virchows Arch 2017; 470 (1): 91–8. doi: 10.1007/s00428-016-2048-0.
  40. Alcaraz LB, Mallavialle A, Mollevi C, et al. SPARC in can- cer-associated fibroblasts is an independent poor prognostic factor in non-metastatic triple-negative breast cancer and exhibits pro-tumor activity. Int J Cancer 2023; 152 (6): 1243–58. doi: 11002/ij  4345.
  41. Kim NI, Kim G-E, Park MH, et al. Up-regulation of SPARC is associated with tumor progression and epithelial SPARC expression is correlated with poor survival and MMP-2 expression in patients with breast Int J Clin Exp Pathol 2017; 10 (3): 2675–88. www.ij ep.com /ISSN:1936- 2625/IJ 47490.
  42. López-Moncada F, Torres MJ, Castellón EA, Contreras Secreted protein acidic and rich in cysteine (SPARC) in- duces epithelial-mesenchymal transition, enhancing migra- tion and invasion, and is associated with high Gleason score in prostate cancer. Asian J Androl 2019; 21 (6): 557–64. doi: 10.4103/aja.aja_23_19.
  43. Ma J, Gao S, Xie X, et al. SPARC inhibits breast cancer bone metastasis and may be a clinical therapeutic targe Oncol Lett 2017; 14 (5): 5876–82. doi: 10.3892/ol.2017. 6925.
  44. Lepucki A, Orlińska K, Mielczarek-Palacz A, et al. The role of extracellular matrix proteins in breast Clin Med 2022; 11 (5): 1250. doi: 10.3390/jcm11051250.
  45. Wyatt AW, Osborne RJ, Stewart H, et al. Bone morpho- genetic protein 7 (BMP7) mutations are associated with variable ocular, brain, ear, palate, and skeletal anomalies. Human Mutation 2010; 31 (7): 781–87. doi: 1002/hu- mu.21280.
  46. Pulido C, Vendrell I, Ferreira AR, et al. Bone metastasis risk factors in breast Ecancermedicalscience 2017; 11: 715. doi:  10.3332/ecancer.2017.715
  47. Alarmo EL, Korhonen T, Kuukasjärvi T, et al. Bone morpho- genetic protein 7 expression associates with bone metastasis in breast carcinoma Ann Oncol 2008; 19 (2): 308–14. doi: 10.1093/annonc/mdm453.
  48. Schwalbe M, Sänger J, Eggers R, et al. Differential expres- sion and regulation of bone morphogenetic protein 7 in breast cancer. Int J Oncol 2003; 23 (1): 89–95. https:// pubmencbi.nlm.nih.gov/12792780/.
  49. Katsuta E, Maawy AA, Yan L, Takabe K. High expression of bone morphogenetic protein (BMP) 6 and BMP7 are associated with higher immune cell infi  tion and bet- ter survival in estrogen receptor-positive breast cance Oncol Rep 2019; 42 (4): 1413–21. doi: 10.3892/or.2019. 7275.
  50. Bach DH, Park HJ, Lee SK. The dual role of bone morpho- genetic proteins in Mol Ther Oncol 2018; 8: 1–13. doi: 10.1016/j.omto.2017.10.002.
  51. Lukianova N, Zadvornyi T, Kashuba E, et al. Expression of markers of bone tissue remodeling in breast cancer and prostate cancer cells in v Exp Oncol 2022; 44 (1): 39–46. doi: 10.32471/exp-oncology.2312-8852.vol-44-no- 1.17354.

Без коментарів » Додати коментар